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Mass-conserved flow law inversion algorithms

(McFLI)
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Grand challenge: Accurate
discharge estimation for
ungauged rivers. McFLI
algorithms provide a way

forward



Mass-conserved flow law inversion algorithms
(McFLI)

Flow laws relate discharge

(Q) to observations (Y) and
unknown parameters (a) at
each reach or cross-section

(/) and for each overpass (t):
Qi,t — f(Yz',t, CVz')

Mathematically, McFLI
algorithms simply choose a
to force flow laws to be
consistent across reaches,

and overpasses:

. 2
McFLI algorithms require a flow law to hold and I1n Z (Qi+1,t — Qi,t)
flow to be conserved across reaches, and solve for & it

flow law parameters such as bathymetry and

roughness



Mass-conserved flow law inversion algorithms
(McFLI)
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We have found simple flow
laws to be remarkably
robust
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Applied to river surface slopes (the
SWOT observable) Manning’s equation
is applicable to backwater behind low-
head dams
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Hydraulic geometry relationships also

show surprising skill
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Using McFLI algorithms with SWOT data

SWOT project will produce discharge beginning 6 months after
the validation phase, using simple flow laws

The flow law parameters will be provided by the Science Team

The Science Team will estimate flow law parameters using
McFLI algorithms applied to ~ 1 year of SWOT data



McFLI algorithm status: The Pepsi Challenge

McFLI algorithms including MetroMan, AMHG, and GaMo have
been developed, and are supported by 7+ papers explaining the
methods and testing on a particular river: Results all looked great!

The Pepsi Challenge was truly blind: we did not attempt to tune
or tweak, but developed a feasible end-to-end process to test
algorithms

Tested using model output with braided rivers, 1-D floodplains,
simple multi-channel rivers, low-head dams, and some simple
rivers



McFLI algorithm status: Performance bottom line
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Relative RMSE
across all 19 rivers

Target: < 35% RRMSE

Best-performing algorithms hit
this target for 14/19 rivers, and
for 14/16 non-braided rivers

No clear “best” algorithm for all
rivers

Median across all algorithms hit
target for only five rivers



McFLI algorithm status: Most of the error is bias
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100+%
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RRMSE StDev of Relative Error

RRMSE? = Bias? + StDevRelErr?

Standard deviation of the
relative error hits the target
in 14/19 cases

Thus even poorly-
constrained flow laws can
provide accurate flow
variations

But goal of McFLI algorithms
is to produce unbiased Q
estimates...



McFLI algorithm status: Lessons learned

Some things are not hard, at least for some algorithms: low-head
dams, simple multi-channel rivers, floodplain flow

Braided rivers are hard for all algorithms

Assessments needs to be more nuanced (evaluation for high
versus low flow)

Roughness coefficient changes in time, due to reach averaging

Needs: Further theoretical advances, and further algorithm
testing



Needed algorithm developments: McFLI Theory

Algorithms should be merged at fundamental levels

The AMHG insights, MetroMan Bayesian inversions,
GaMo constrained optimization, and Bjerklie’s MFG
empirically-derived roughness variations each
provides a piece of the puzzle. We are currently
integrating these pieces into cohesive algorithms

1
Q= (Ao + §A)/3W—2/381/2
n=mng(H — Hy)"'

W = aQ®



Needed algorithm developments: McFLI Theory

True
MetroMan 2.0
MetroMan 3.2

Downstream Garonne
RRMSE = 28%
! Previous RRMSE=70%
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Preliminary result — merging Bjerklie’s variable roughness
coefficient with MetroMan (v 3.2) reduces large biases
sometimes observed in Pepsi Challenge (v 2.0)
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Needed algorithm developments: Reach
averaging theory

SERNCEIMRCEICUUCIIN Divergence between effective
(blue) and average (red) model
roughness coefficient in this
model result can be explained
mathematically based on reach
averaging and the non-linear
flow laws [Rodriguez et al., in

prep.].

Such effects need to be further
characterized, explained, and
documented in the literature

500 1000 ) 1500
Discharge, m’s™



Needed algorithm developments: Connections
with data assimilation

Assimilation provides a highly complementary approach to
McFLI algorithms, and the two should be explored together (see
talks by Kostas Andreadis and others)

McFLI algorithms are computationally less expensive and can

easily be run online by the project. Assimilation does not require
as many assumptions

An interesting combination is variational assimilation, being

pursued by Hind Oubanas, Pierre-Olivier Malaterre, Jerome
Monier, and others



Needed algorithm developments: Four scenarios
for using a priori information

1.A real-time, available gage is available within the reach
reporting both stage and discharge: Simply utilize the gage to
constrain flow law parameters. Still need gaining-losing estimate
from models (see poster by Ed Beighley)

2.Historical gage discharge and historic altimetry or width data
are available. Constrain flow law parameters directly.

3.Historical gage discharge are available. Constrain estimates to
be “close” to historical data

4.Modeled discharge from past years (or real-time/current) are
available. Constrain estimates to be “in the same ballpark” as
the model: mean annual flow, etc.



DAWG and RAMADA need you!

If you have the following for any river....

* A calibrated channel hydraulic model
* A floodplain DEM + channel bathymetry
e Distributed in situ measurements of height, width, and slope

e Simulator outputs
* Secret AirSWOT data

WE NEED IT! Contacts:

Colin Gleason at cjgleason@umass.edu
Mike Durand at durand.8 @osu.edu
Pierre-andre.garambois@insa-strasbourg.fr
Helene.roux@imft.fr




Additional algorithm testing: Call for instrument
simulator dataset inputs

It is necessary to build a
database of simulated SWOT
data on many rivers. Need
high-resolution (<10 m; 2 m
ideal) 2-D hydraulic model in
order to resolve effects of
(natural & man-made) levees,
in order to accurately simulate
radar phenomena leer o 2o

RiverObs Refined Centerline A, Pov=
Water Depth [m] /

.11.6
Example at right on the 0

Terrain DEM [m]
Sacramento River. See poster -
by Rui Wei, presentation by
Renato Frasson

— Initial Centerline

-1.96




Additional algorithm testing: Testing with field

observations

Need to move away from models for testing
algorithms! Not many datasets include
observations of slope dynamics. With high-
resolution water surface elevation, and some
way of handling width observation (stage-
width ratings, e.g.), an in situ analog to SWOT
can be developed

2014 Olentangy Data

Olentangy River data. See
poster by Steve Tuozzolo




Additional algorithm testing: how to set up a

field site for discharge algorithm use

Create a bathymetric map from a float down the reach: side-scan
sonar ideal, cross sectional bathymetry ok.

Ideally, survey in 30 transducers, spaced every 2km, throughout the
reach a 60km reach. This regular spacing allows for maximum reach

definition flexibility (see talk by R. Frasson)

One gauging station must be established and active throughout
collection

At each transducer site, make at least one ADCP discharge
measurement

At each transducer site, measure the cross sectional bathymetry and
the cross-sectional floodplain topography. This will allow use of
transducers to calculate width, and creation of a 2D model.



Additional algorithm testing: Further AirSWOT
observations are crucial

AirSWOT datasets capable of testing McFLI
algorithms available on the Tanana,
Willamette, and Sacramento

Further datasets covering additional river
cases with dynamic floodwaves moving
through river channels are critical
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AirSWOT data on the
L Willamette, courtesy Steve
2 “ 44Flow diifance, k4ne1; TUOZZOIO




Proposed RAMADA collaboration

Might committing to quarterly telecons be
useful for a year until the next ST meeting,
to generate some exchange of ideas among
the various teams?

Discharge workshop (October, details TBD)?
Continue to use the DAWG blog?

We have developed a set of SWOT-like
reach-averaged data for 19 rivers. Would
the assimilation teams like to try
assimilating these, and characterize
improvement over simpler McFLI
algorithms?
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