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- High spatial resolution on the
swath
- Poor temporal resolution

- How can we resolve SSH(x,y,t)
from SWOT ?



SSH sampled with SWOT
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Outline

 The present mapping (L4) method in altimetry
and how it would work for SWOT?

* Why going further linear analysis?

* Exploration of a dynamic interpolation method:
results, limitations, future improvements ...



Slide from G. Dibarboure

e Objective analysis (optimal interpolator)

long-track
- Z ZQ—' gtc))snegr\;cz;iicons

Grid pixel Covariance Covariance between grid
between pixel and observations
observations

e Covariance matrices describe the properties of mesoscale and measurement errors
* Example of covariance model for mesoscale:

(h.h) = var(h) *C(r.1) J()(yy)

1 2 1 3 -r _(to)
C(r,t)=(1+r+gr —gf )*e € Arhan et Colin de Verdiére, 1985

 The operational model also accounts for propagation velocities and x0, yO, t0, vxO,
vy0 are fitted on along-track data and adjusted to ensure homogeneous sampling



produced by AVISO/DUACS - Copyright CNES/CLS 2013

Merged Aviso map from AltiKa, Cryosat, Jason-2 and Jason-3



From Gaultier et al., JTECH, 2016

(€) True Velocity (f) From SWOT-like (¢) From Nadir-like

mapped observations mapped observations

* The method applies with a few technical adjustments:

- «super obs» for matrix inversion of reasonable size

- Or inversion in reduced parameter space.
* SWOT mapping can preserve ~“80km eddies in favorable situations.
* Important loss between SWOT subcycles. Eddy displacement not
anticipated by the linear model of covariances



Is a linear model still appropriate to describe error covariances for SWOT ?
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Is a linear model still appropriate to describe error covariances for SWOT ?
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Is a linear model still appropriate to describe error covariances for SWOT ?

Strong non-linearities: active advection
of PV
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Is a linear model still appropriate to describe error covariances for SWOT ?
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Is a linear model still appropriate to describe error covariances for SWOT ?

Strong non-linearities: active advection
of PV

300 1

200

_9
Y =4SSH

0.5
100

-100

-0.5

-200

-300

1 —
109 110 111 112



Is a linear model still appropriate to describe error covariances for SWOT ?
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Today’s Ol mapping cannot handle non-linearities :
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- A significant part of the SWOT signal would be filtered out of the maps,

unused.

Explore beyond linear Ol to design new data products




* To account for some non-linearities of the eddy motions

 To provide an intermediate solution between statistical

mapping and data assimilated products: use of reduced
models

¢=§55H
1
q=VYP—=1
dq ) Y
—~ /W -p-—-=0

Short-term propagator of the SSH field to help
filling the SWOT gaps



Truth at t-2days
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models
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Truth at t-2days
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models



Backward propagation m
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models



Dynamic interpolation Truth at t, + 2 days

1350 g \ = L
‘,“ \'\\ I
130012 [/ g 5

1250 7 —— Y

1200 7/l .

900 950 1000

/) (== 1 | _———— \ MU
750 800 850 900 950 1 05(7)00 750 800 850 900 950 1000 700 750 800 850

More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models



Truth at t,-2days Standard interpolation error
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models



Truth at t-2days
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More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

- Simplified illustration (no instrument noise, full snapshot) showing the
potentials of reduced models



— Standard mapping with predefined covariances B

Covariance model:

T A A T

Covariances between Same, between Innovation with e.g. Arhan et Colin de Verdiere, 1985
signal at tref and obs  pair of obs at two background
att different times

Because of the rapid mesoscale motions, covariances decrease rapidely in time (t,~10-15 days)

- We keep the inversion approach, but use the propagator to update covariances (B—=>B’, with
Greens function approach).
The propagator M is NON-LINEAR, it is linearized (M) around a guess = Covariances are
flow-dependent

— Dynamic mapping with flow-dependant covariances B’

Iterative solving (2-3 iterations enough) on the guess x,

| v v v I

X, =x,+B, H'(HB,_H'+R)" [yo -Hx, - H(M (x, -x,) - M(x, - xb))]

Covariances between signal at tref and Same, between Innovation with Substraction of the non-linear
obs at t transported by the linearized pair of obs at two  background evolution of the guess (not
propagator around the guess xg different times accounted in B’)

A part of the rapid mesoscale motions is accounted in the covariances = They are less
attenuated in time, allowing better use of observations far in time
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Importance of the barotropic mode near the coast
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Reynolds decomposition to divide quantities into a time mean plus fluctuations

PV fluctuation equation (Arbic, 2000) : -gg+ J(,q) + J(,q) + J (3, q) = ssd
2 layers model : adding the barotropic mode
NG
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- We focused on the balanced dynamics (no internal waves)

- Standard objective mapping method would work for SWOT but would not
handle scales below 80-100km

-The use of reduced models to compute flow-dependant covariances
(dynamic mapping) is a possible approach to map smaller scales
-->1 QG layer is already efficient in open ocean
--> Possibility to consider 2 modes

- The first tests on synthetic SWOT data are promising (regional tests so
far, computationally demanding)

- Should be compared with data assimilation in full PE models



backup



Non-linear integrations ‘
(forward and backward)z [

p— >
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One of the ~1000 Fourier component Linear response around the guess after 2 days

G =HT I, represents the propagated Fourier components (or ‘Green functions’) by the
k k linear response of the propagator around the guess. G (projected in obs space) is
the green function matrix

B'= FQFT Q is diagonal, constructed consistently with the spatial covariance



Implementing the dynamic propagator in the covariance model

| Voo

x. =x, + B'H'(HB'H' +R)" (Yo - HM(Xg)"’HM(Xg - Xb))

Covariances between signalat  Same, between Innovation with Addition of the guess
tref and t transported by the pair of obs at two respect to the innovation with
linearized propagator around different times  propagated guess  respect to the

guess xg background

M : the non-linear propagator
M: Linearized propagator
xg: the current guess used for the propagator’s linearization. Iterative solving on xa

B’ obtained with green functions propagated through the 15t BM PV conservation on a current

guess Xxg.

- A new covariance model for altimetry mapping, in the linearized 15t baroclinic mode
space (instead of static or ‘translating’ space)



DOI: analysis step and iterative solving

x, =%, +T,QG'(GQG' +R)" (y, - HM (x,) + HM(x, - x,))

Covariances between signal at  Same, between  Innovation with Substraction of the
tref and t transported by the pair of obs at two respect to the non-linear part of the
15'BM linearized around guess xg different times propagated guess guess integration

Xg: a current guess used for 1tBM linearization

G: sin function (2D Fourier component) propagated by 158BM applied to xg, in obs space
(‘Green functions’, details later)

Practical implementation

Formulation with inversion in reduced grid space :

x, =x, +I,(Q"+G'R'G)'G'R" (yo ~H(M (x,)-M(x, - xb)))

n
x, =x,+[,n Iterative solving on n M(xg -X,)= G77g
n=(Q'+G'R'G)'G'R(y, + Gn,) A local analysis is performed (not
| I I 1‘ 1‘ detailed here) = allows to limit the
Update G with M forward and Update size of the Fourier decomposition

backward integrations (<600km) regardless the size of the

DOI solution: X,=X,+I' 1 domain = ~200 components




lllustration of iterative solving

Pre-defined time-
space covariances:

9 Obs ; ;
B .

B!

ETE T T T " T T I

lOI analysis

Static Ol solution

Green Function
I1 propagation (forward

°5 first baroclinic mode

(Details next slide)
I-O.E
-1

and backward) through

= 280 285 290 295 300
v

Flow-dependant time-
space covariances:

05f 1 ¥ . ; 3 . l

: Obs ? » g

; T

.3‘\ » B £ % » k14 38 » 40 4 @ I .

|

1, Ol analysis

280 285 290 295 300

Dynamic Ol solution



In the context of SWOT

Day 14 Day 21
: : ' : : 0.1 TN 2\ : : . : 0.1
47.5¢ , : 4 Day 17 4750 s, R J
ol = mapping +7) R
S 0.05 : 0.05
465 & \ 46.5) \ \
5 -
46 B - ROMS Oregon{ = a6f ¢ ,
455/ £ o configuration | Fo a55F | 10
' £ sampled by the
457 45}
445+ 44,5} - 1-0.05
44 44}
43.5¢ 43.5} B
43+ 43+ e % ),
4250 M I 42.5 oo ,
231 232 233 234 235 236 1'% 231 232 233 234 235 236
From all SWOT obs between days 2 and 32 From all SWOT obs between days 2 and 32
46 465 46 0.1
45.5 45.5 45.5
0.05
45 45 4
-0
445 445 445
44 p
435

231 232 2;3 234 232 ( 233‘ 23 . 232 ., 233 2;’34
Truth at day 17 ‘linear’ Ol dynamic’ Ol




e This dynamic Ol uses data assimilation techniques, but it is disctinct
from data assimilation in OGCM:

- DA in OGCM is generally under-observed (e.g. N vertical modes, but
just SSH is observed...) 2 the model fill the unknowns with its own

physics.

- With this dynamic Ol, the strong constraint is on the data: the system
is not under-observed (only 1 baroclinic mode accounted in the model)
and the N-1 remaining modes are parameterized with tapered
covariances in time.

Just as the N modes are pamameterized for the standard Ol.

Also, the ‘restoring force’ is toward a mean state, not an OGCM state.



