Global lake storage change

S. Biancamaria (LEGOS), K. M. Andreadis (UW, OSU), M. Durand (OSU), E. A. Clark (UW), E. Rodriguez (JPL), N. M. Mognard (LEGOS), D. E. Alsdorf (OSU), D. P. Lettenmaier (UW) and Y. Oudin (LEGOS)
• **Purpose:**
 – Estimate a global relationship between lake area and lake storage change
 – Roughly estimate the % of storage change SWOT could see

• **Methodology (1/2):**
 1. Global relationship between lake area (A) and the number of lake with this area (N) from a power law: \(N = \alpha A^\beta \) (Downing et al., 2006).

Biancamaria et al., JSTARS, 2010
Methodology (2/2):

2. Estimate the yearly lake water height variation \((dH) \) from 3 datasets: USGS gauges, World Lake Database and T/P measurements (~200 lakes)

- Lake water height variation follows a log-normal distribution

3. Compute the total storage change \((dS_i) \) for all lakes with an area \(A_i \):

\[
dS_i = A_i \cdot \sum_{j=1}^{N_i} dH_i(j)
\]

where \(N_i \) is the number of lakes with an area \(A_i \) (from 1.) and \(dH_i \) follows the log-normal distribution (from 2.)
• Results:

- Nadir altimeters miss more than 60% of lakes and can see area > 100 km² -> see only 15% of the global lake storage change
- SWOT = global coverage and see area > 250m x 250m -> see 65% of the global lake storage change