AirSWOT-SCal:

AirSWOT 2012 Field Experiment off the Southern California Coast

Yi Chao, Lee Fu, Ernesto Rodriguez (JPL)
With contributions from Andy Thompson (Caltech), Burt Jones (USC), Mark Moline (Calpoly)

17 Oct 2011, San Diego
Primary Objective for AirSWOT

• Assess the performance of radar interferometry for studying oceanic processes
Other Objectives for AirSWOT

- Characterize the spatial and temporal decorrelation scales of ocean variability
- Validate numerical ocean models (e.g., ROMS) at the submesoscales
- Assess the ability of ocean models (e.g., ROMS) in assimilating the data for dynamical interpolation of sub-sampled data
- Investigate optimal design of the fast-sampling phase of the SWOT mission
AirSWOT Field Experiment Site Selection

• Southern California Coastal Ocean (SCal)
 – Close to the aircraft base, JPL
 – Existing ocean observing systems
 – Local (UCLA, JPL, Caltech) expertise in mesoscale/submesoscale theory and modeling
 – Synergy/coordination with other field experiments
Southern California Coastal Ocean Observing System (SCCOOS)

http://sccoos.org
Proposed Additional Measurements to support AirSWOT-SCal

- Slocum gliders (2) for shallow coastal ocean

(Prof. Burt Jones, USC)
Proposed Additional Measurements to support AirSWOT-SCal

• Seaglider (1) for deep open ocean

(Prof. Andy Thompson Caltech)
Proposed Additional Measurements to support AirSWOT-SCal

- REMUS 600 AUV (1) for fast sampling but short (e.g., 1~3 days) duration

(Prof. Mark Moline, Calpoly)
AirSWOT-SCal Design Considerations

- Underfly Jason-1/2 tracks
- Strong mesoscale & submesoscale signals
- Little or no island effect
- Small internal tides
- Existing observing systems
- Existing data assimilation models
AirSWOT-SCal: Daily AirSWOT flight during 4-week, underfly Jason-1/2 satellite tracks, HF radar coverage, vertical profiles of Temperature/Salinity from glider/AUV, data assimilation models

Coverage: 100x100 km^2

Gliders:
- 0.5 kt.
- 20 km/day

AUV:
- 2.5-5 kt
- 100-200 km/day
Data Assimilation Models

Capet et al.,
2008
Synergistic Opportunities (2012 Fall)

• Submesoscale Experiment III (SubEx III) funded by NASA
 – Aircraft IR SST mapping, Boat survey (Burkard Baschek, Jeroen Molemaker, UCLA)
 – SAR images from satellite and aircraft (Ben Holt, JPL)
 – Surface drifters (Carter Ohlmann, UCSB)

• Overlap with AirSWOT-SCal
Synergistic Opportunities (2012 Fall)

- Background: Orange County Sanitation District (OCSD): third largest wastewater agency west of the Mississippi River. Each day, 230 million gallons of wastewater are treated and pumped into the ocean.
- The OCSD outfall diversions will occur in the fall 2012.
- Before and during the diversions, OCSD will sponsor a systematic survey (gliders) and modeling efforts.
- Overlap with AirSWOT-SCal.
Summary: AirSWOT-SCal to address Primary AirSWOT Objectives

• Assess the performance of radar interferometry for studying oceanic processes
 – Underfly Jason tracks, co-located in situ data from gliders (1 seaglider, 2 spray gliders, 2 Slocum gliders) and AUV (REMUS 600) as well as HF radar
Summary: AirSWOT-SCal to address other AirSWOT Objectives

- Characterize the spatial and temporal de-correlation scales of ocean variability
 - In situ (slow gliders & fast AUV; HF radar surface current) and AirSWOT data over 100x100 km^2 during 4-week

- Validate numerical ocean models (e.g., ROMS) at the submesoscales
 - High resolution (250-m) nested ROMS simulations will be compared against the AirSWOT-SCB data

- Assess the ability of ocean models (e.g., ROMS) in assimilating the data for dynamical interpolation of sub-sampled data
 - AirSWOT and/or in situ data will be assimilated into ROMS using multi-scale 3DVAR method

- Investigate optimal design of the fast-sampling phase of the SWOT mission
 - Twin experiments can be constructed to compare different designs of the fast-sampling SWOT phase
Questions about AirSWOT-Scal?
Discussions...

Contact: Yi.Chao@jpl.nasa.gov