Including stage-dependent roughness coefficient in algorithms to estimate river discharge from remotely sensed water elevation, width, and slope

Michael Durand¹(durand.8@osu.edu), Colin Gleason², David Bjerklie³, Pierre Andre Garambois⁴, Larry Smith⁵, Hélène Roux⁶, Ernesto Rodríguez⁷, and Steve Tuozzo⁸

INTRODUCTION

• SWAT will measure ~10⁶ river reaches (~10 km in length). Most are ungauged or unshared [Pavelky et al., 2014]
• Methods to solve inverse problem to estimate river discharge from SWAT observations have been proposed and tested by Durand et al. [2016], a study known as the Pepsi Challenge (“PC16”)
• Six algorithms were applied to nineteen rivers. At least one algorithm to within ±35% relative RMSE
• Deficiencies in MetroMan algorithm improved in this poster
• Goal: Using ten “best” hydraulic models from PC16, improve algorithm to obtain globally deployable version of MetroMan (v3.2 using stage-varying roughness coefficient)
• Synthetic height, width, slope produced for each reach

METHODS

Stage-varying roughness coefficient

Manning’s equation as used for SWAT is:

\[Q = \frac{1}{n} (\alpha_b + \beta) \frac{1}{3} W^{2/3} S^{1/2} \]

where \(Q \) is river discharge, \(\alpha_b \) is the effective roughness coefficient, \(A \) is the unobserved cross-sectional area, \(S \) is the observed change in area, the \(W \) is the river top width, and \(n \) is the roughness height, width, slope produced for each reach to be positive.

METHODS

Computing prior estimates for \(\alpha_b, a, \) and \(b \) from \(Q \)

• We begin with Water Balance Model [Wiser et al., 2010] simulations of long term mean annual flow (MAF) and assume it is ±35% accurate, with log-normal uncertainty
• We then use a simple Markov Chain Monte Carlo approach to estimate the distributions of \(A, a, \) and \(b \). Example below: River Severn, reach 3.

RESULTS

Inversion window used

<table>
<thead>
<tr>
<th>River</th>
<th>Garonne Downstream</th>
<th>Sacramento Downstream</th>
<th>Mississippi Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>RMSE (%)</td>
<td>NSE (%)</td>
<td>VE (%)</td>
</tr>
<tr>
<td>Gironde</td>
<td>5.1%</td>
<td>74%</td>
<td>48%</td>
</tr>
<tr>
<td>Garonne</td>
<td>7.1%</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>Mississipi</td>
<td>7.5%</td>
<td>81%</td>
<td>40%</td>
</tr>
<tr>
<td>Ohio</td>
<td>4.2%</td>
<td>74%</td>
<td>32%</td>
</tr>
<tr>
<td>Plata</td>
<td>6.9%</td>
<td>47%</td>
<td>33%</td>
</tr>
<tr>
<td>Sacramento</td>
<td>5.1%</td>
<td>71%</td>
<td>40%</td>
</tr>
<tr>
<td>Seine</td>
<td>8.1%</td>
<td>52%</td>
<td>30%</td>
</tr>
<tr>
<td>Severn</td>
<td>7.4%</td>
<td>52%</td>
<td>32%</td>
</tr>
</tbody>
</table>

\(n_Bias \) is calculated using MAF. A parameterized MAF is assumed (red line on right). A Markov Chain Monte Carlo approach to estimate the distributions of \(A, a, \) and \(b \). Example below: River Severn, reach 3.

• Results are improved (vs. v2.0). \(rRMSE \) is a better indicator of accuracy for Seine and Ohio, where low flows are poor but others are good
• Bias dominates the error in most cases

REFERENCES

ACKNOWLEDGMENTS

This work supported by SWOT Science Team grant NNX16AH22G.