
Theoretical Basis for the Resolution and Noise

of SWOT Estimates of Sea-Surface Height

Dudley B. Chelton and Roger M. Samelson

Oregon State University

and

J. Thomas Farrar

Woods Hole Oceanographic Institution

May 14, 2015

1. Introduction

This note clarifies two important issues related to ocean observations of sea-surface height

(SSH) by SWOT. The analysis presented here is intended to supplement the discussion in the SWOT

science requirements document1, the onboard processing document2, and the mission performance

and error budget document3.

The first issue is the question of how the raw SWOT data will be filtered by the onboard

processor and the related questions of what the resolution and decorrelation length scale are for the

onboard pre-processed estimates of SSH. This information is provided in the onboard processing

document2, but without the mathematical basis for the conclusions. A rigorous development of

the mathematical formalism for assessing the resolution and decorrelation length scale is presented

in Section 2, along with a discussion of the error reduction that can be achieved by smoothing of

the onboard pre-processed SWOT data in ground-based post-processing. Section 2 also includes

a clarification of the relation between the feature resolution of smoothed SSH fields as defined in

the onboard processing document2 and the wavelength resolution corresponding to the half-power

filter cutoff that is often used by oceanographers to characterize resolution.

The second issue is the question of the science requirement for the variance of the uncorrelated

errors in the pre-processed estimates of SSH computed onboard the SWOT spacecraft. While this is

important information for users since these data are fundamental to all oceanographic applications

of SWOT data, the requirement for the noise variance of the onboard estimates of SSH is not

explicitly specified in the present drafts of the SWOT documentation1,2,3. The analysis in Section 3

clarifies the relationship between the uncorrelated errors in the onboard pre-processed estimates

of SSH and the error specification as characterized in the SWOT documentation. The latter

is expressed as a white-noise spectrum only for wavelengths longer than 15 km over which the

estimated signal-to-noise ratio is required to exceed unity for 68% of the world ocean (see the

cyan line in Figure 1). This uncorrelated error specification is furthermore based on hypothetical

smoothing of the onboard SWOT data with an idealized 2-dimensional filter that eliminates all

variability with scales shorter than 15 km. The 1-dimensional (e.g., along-track) white-noise spectral

representation of the residual uncorrelated measurement errors after this hypothetical filtering is

shown by the dashed red line in Figure 1.
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Since idealized filtering is not achievable in practice, the science requirement specification

of SWOT measurement accuracy cannot be tested rigorously in post-launch verification. The

instrument performance could be assessed from SWOT data smoothed with a realizable filter that

has the same 15-km filter cutoff wavelength as the idealized filter. Such an assessment could only

be qualitative, however, since the wavenumber content of the filtered data will be subject to the

limitations of the gradual rolloff of the filter transfer function of the realizable filter. A quantitative

assessment of SWOT measurement accuracy can only be made from the onboard pre-processed

SWOT estimates of SSH without applying additional filtering. Moreover, the variance of the

uncorrelated errors in the onboard SWOT data without filtering is essential information to enable

users to make informed decisions about their choice of filtering in post-processing of the SWOT

data to reduce the noise.

The white-noise spectrum of the uncorrelated errors in the onboard pre-processed SWOT data

that is derived in Section 3d from the error specification with hypothetical filtering is shown by

the dashed blue line in Figure 1. The RMS value of the uncorrelated errors in the onboard pre-

processed SWOT data derived from this white-noise spectrum is 2.74 cm. Since this information

is not explicitly provided in the SWOT documentation1,2,3, this result and the discussion of its

theoretical basis are perhaps the most important contributions of the analysis presented here.

In addition to uncorrelated errors, SWOT data are also contaminated by spatially correlated

measurement errors from a variety of sources, including orbit errors, sea-state bias errors and envi-

ronmental corrections of the two-way travel time of the altimetric range estimates. The spectrum of

these long-wavelength measurement errors is expressed in the SWOT documentation1,2,3 in terms

of the hypothetical ground-based post-processed SWOT data after idealized smoothing with a filter

cutoff wavelength of 15 km (see the dotted red line in Figure 1). The spectrum of total measure-

ment errors in the hypothetically smoothed SWOT data is the sum of the spectra of uncorrelated

errors and long-wavelength errors, which is shown by the solid red line in Figure 1. The associated

spectrum of total measurement errors in the onboard pre-processed SWOT data without smooth-

ing that is deduced in Section 3d is shown by the solid blue line. For reference, the mean and 68

percentile of the distribution of global SSH signal spectra that are presented in the SWOT science

requirements document1 are shown by the black and cyan lines, respectively.

The various sources of spatially correlated measurement errors have wavelengths much longer

than the submesoscale and mesoscale variability with wavelengths shorter than ∼100 km that is

the primary oceanographic emphasis of the SWOT mission. These long-wavelength measurement

errors can thus be largely removed by spatially high-pass filtering the SWOT data in the along-

track direction. The dominant source of measurement errors on scales shorter than ∼100 km is the

spatially uncorrelated errors that are addressed in this note.

The uncorrelated SWOT measurement errors are treated here as if they are constant regionally

and temporally. In reality, the measurement errors vary somewhat across the measurement swaths,

with higher values near the edges of each swath. They also increase with increasing significant

wave height, which varies regionally and temporally. As in the science requirements document1,

the uncorrelated measurement errors derived in this note for the onboard pre-processed 1 km × 1 km

SWOT estimates of SSH are for the global, time-averaged estimates across the inner 50 km of the

measurement swaths for conditions of 2-m significant wave height.
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2. Filtering and Resolution

The raw SWOT estimates of SSH at the full resolution of ∼10 m of the Ka-band Radar

Interferometer (KaRIn) instrument are far too noisy to be useful in oceanographic applications. To

reduce the measurement noise, while at the same time reducing the unnecessarily large data volume

over the oceans, the present plan2 is to smooth the raw data onboard the spacecraft to achieve

a resolution of 1 km. The meaning of “resolution” as defined in the SWOT onboard processing

document2 is discussed in Section 2c.

There are many possible filters that could be used for this smoothing. In one dimension, every

filter can be characterized by its filter cutoff wavenumber kc, which is defined below in Section 2a

in terms of the filter transfer function of the smoother. The ideal filter has a filter transfer function

that consists of values of 1 for wavenumbers |k| ≤ kc and 0 for higher wavenumbers. In practice, the

filter transfer functions of real filters decrease gradually with increasing wavenumber across the low-

wavenumber pass band and roll off steeply through the filter cutoff wavenumber kc. Most real filters

also have undesireable side lobes at wavenumbers higher than kc. The simple uniform-weighted

running average smoother considered in Section 2a has the largest side lobes of any low-pass filter.

As described in detail in the onboard processing document2, the SWOT Project Office plans to

smooth the raw SWOT data differently in the along-track and cross-track directions. Specifically,

along-track smoothing will be applied using a Blackman-Harris smoother, and cross-track smooth-

ing will be applied using the Parzen smoother that is defined in Section 2b. The parameters of each

of these smoothers were carefully chosen by the SWOT Project Office to have essentially identical

filtering properties. The filter transfer functions of both of these smoothers have side lobes that

are much smaller than those of the uniform-weighted running average. The rationale for different

smoothing in each dimension is not clear. The Blackman-Harris smoother has better side lobe

suppression (see Figure 32 in the onboard processing document2; see also Harris, 19784), but not

enough so to make any significant, or even detectable, difference in the smoothed SSH values. The

2-dimensional smoothing of the raw SWOT data could thus be achieved equally well for all intents

and purposes by smoothing with a Parzen window in both dimensions. It is therefore sufficient to

consider only the Parzen smoother in this note. The filtering properties of the Parzen smoother

are examined in detail in Sections 2b–e.

2a. The Running Average Smoother

The Parzen smoother to be used for cross-track smoothing in the SWOT onboard processor

(see Sections 2b and 2c) is most easily understood by first considering the simple running average

smoother. For simplicity, consider the case of a 1-dimensional spatial series that is continuous.

The results can be extended straightforwardly to the case of 2-dimensional “block averaging.” The

results can also be extended to discrete sampling, but the equations become more cumbersome.

A running average with a span of L1 applied to a spatial series h(x) can be written as the

convolution

h1(x) = w1(x) ∗ h(x) ≡
∫ ∞
−∞

w1(x− s)h(s) ds, (2.1)
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where the weighting function is

w1(x) =
1

L1
Π

(
x

L1

)
(2.2a)

and Π(x/L1) is shorthand notation for the rectangle function defined by

Π

(
x

L1

)
≡
{

1 if −L1/2 ≤ x ≤ L1/2

0 otherwise.
(2.2b)

The output (2.1) of the running average smoother with weighting function (2.2) is thus

h1(x) =
1

L1

∫ ∞
−∞

Π

(
x− s
L1

)
h(s) ds =

1

L1

∫ x+L1/2

x−L1/2

h(s) ds. (2.3)

The subscript 1 distinguishes this uniform-weighted running average from the Parzen weighted

running average that is defined later in Section 2b.

The filter transfer function of any smoother is defined to be the Fourier transform of the

weighting function associated with the smoother. For the case of the uniform-weighted running

average (2.3), the Fourier transform of the weighting function (2.2) is

W1(k) =

∫ ∞
−∞
w1(x) e−i2πkx dx =

1

L1

∫ L1/2

−L1/2

e−i2πkx dx =
2

L1

∫ L1/2

0

cos(2πkx) dx = sinc(kL1), (2.4a)

where k is wavenumber and sinc(kL1) is shorthand notation for

sinc(kL1) ≡ sin(πkL1)

πkL1
. (2.4b)

Note that the multiplicative factor π in the numerator and denominator on the right side of (2.4b)

is implicit in the definition of sinc(kL1).

The wavenumber contents of the unfiltered and filtered data are defined by their Fourier trans-

forms, which can be denoted as H(k) and H1(k), respectively. By the Convolution Theorem, the

convolution integral (2.1) in the space domain can be expressed as multiplication in the wavenum-

ber domain. The wavenumber content H1(k) of the filtered output h1(x) is thus related to the

wavenumber content H(k) of the unfiltered data h(x) by

H1(k) = W1(k)H(k) . (2.5)

The filter transfer function W1(k) thus determines the wavenumber content of the filtered output.

The filtering properties of any smoother can be characterized by a filter cutoff wavenumber

that is defined to be the wavenumber at which the squared value of the filter transfer function has

a value of 0.5. This half-power filter cutoff wavenumber kc for the filter transfer function (2.4) of

the uniform-weighted running average smoother is thus the value of kc for which

W 2
1 (kc) = sinc2(kcL1) = 0.5 ⇒ kc =

0.443

L1
. (2.6)
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The weighting function (2.2) and the squared value of the filter transfer function (2.4) of the

uniform-weighted running average are shown for the case of L1 = 1 km in Figure 2. A highly

undesirable feature of the simple running average smoother with uniform weighting is that its filter

transfer function has large side lobes outside of the main lobe that defines the range of wavenumbers

|k| ≤ kc that are of interest.

2b. The Parzen Smoother

The large side lobes of the filter transfer function of the uniform-weighted running average

examined in Section 2a can be suppressed by replacing the uniform weighting with a tapered

weighting. A simple approach to tapering is to apply a succession of uniform-weighted running

averages. For example, the weighting function for two passes of a uniform-weighted running average

with a span of L1 can be shown to be equivalent to a single triangular weighted running average

with a span of L2 = 2L1. More generally, p passes of a uniform-weighted running average with

a span of L1 are equivalent to a single weighted running average with a span of Lp = pL1 and a

weighting function that consists of a piecewise continuous polynomial of order p− 1.

Mathematically, the weighting function wp(x) of p passes of a uniform-weighted running av-

erage with a span of L1 consists of p convolutions of the rectangle weighting function (2.2) of the

uniform-weighted running average. The Fourier transform of this smoother (i.e., its filter transfer

function) is therefore easily determined from the Convolution Theorem to be the multiplicative

product of p of the filter transfer functions (2.4) of the uniform-weighted running average,

Wp(k) = sinc p(kL1) . (2.7)

The extremum of the jth side lobe of this filter transfer function has a value of sinc p(kjL1), where

kj = (j + 1/2)/L1, j = 1, 2, 3, . . .. Since sinc(kjL1) = (−1)j/ [(j + 1/2)π] has a magnitude less

than 1 for all j, the side lobe extrema decrease rapidly in magnitude both with increasing j and

increasing p. For the case of the dominant j = 1 side lobe, the sinc function has a value of

sinc(1.5) = sin(1.5π)/(1.5π) = −0.212. The dominant side lobe of the filter transfer function for

p passes of the uniform-weighted running average thus has a magnitude of 0.212 p and a squared

magnitude of 0.212 2p.

There is no practical advantage to smoothing with more than p = 4 passes of a uniform-

weighted running average since the extremum of the dominant side lobe of its squared filter transfer

function is 4.08 × 10−6, i.e., an attenuation factor of more than 50 db. The quadruple running

average is called the Parzen smoother. Mathematically, the weighting function of the Parzen

smoother can be written as a quadruple convolution of the weighting function (2.2) of the uniform-

weighted running average,

w4(x) =
1

L4
1

[
Π

(
x

L1

)
∗Π

(
x

L1

)
∗Π

(
x

L1

)
∗Π

(
x

L1

)]
. (2.8)

The output of the Parzen smoother is the convolution

h4(x) = w4(x) ∗ h(x) =

∫ ∞
−∞

w4(x− s)h(s) ds . (2.9)
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The subscript 4 signifies that the Parzen smoother is equivalent to 4 passes of a uniform-weighted

running average. The filter transfer function (2.7) with p = 4 for the Parzen weighting function is

W4(k) = sinc4(kL1) = sinc4

(
kL4

4

)
, (2.10)

where L4 = 4L1 and L1 is the span of each of the four passes of the uniform-weighted running

average. The significance of L4 becomes apparent below. The filter cutoff wavenumber of the

Parzen smoother, defined as in (2.6) to be the wavenumber kc at which the squared value of the

filter transfer function (2.10) has a value of 0.5, is

W 2
4 (kc) = sinc8(kcL1) = sinc8(kcL4/4) = 0.5 ⇒ kc =

0.228

L1
=

0.910

L4
. (2.11)

While it would be very tedious to calculate the weights of the Parzen smoother from the

quadruple convolution (2.8), it is straightforward with the help of integral tables to determine

these weights from the inverse Fourier transform of the filter transfer function (2.10). The result is

the piecewise cubic polynomial defined by

w4(x) =



8

3L4

(
1− 24x2

L2
4

+
48|x|3

L3
4

)
if 0 ≤ |x| ≤ L4/4

8

3L4

(
2− 12|x|

L4
+

24x2

L2
4

− 16|x|3

L3
4

)
if L4/4 ≤ |x| ≤ L4/2

0 if |x| > L4/2.

(2.12)

It is thus apparent that the Parzen smoother has a full span of L4 that is defined above to be four

times larger than the span L1 of each of the four passes of the uniform-weighted smoother upon

which it is based.

In principle, the Parzen smoother (2.9) can be implemented either as a succession of four

passes of the uniform-weighted running average (2.3) with span L1 or as a single pass of (2.9) with

the piecewise cubic weighting (2.12) and a span of L4 = 4L1. In practice, however, application to

discretely sampled data results in small differences in the filtered output by the two procedures.

When applied to data with a uniformly spaced sample interval of ∆x, for example, an arbitrarily

specified value of L4 can result in a value of L1 = L4/4 that is a non-integer multiple of ∆x.

Moreover, it is desirable for the smoothing span to be an odd multiple of ∆x so that the weighting

function is symmetric. This assures that there is no phase shift at any of the wavenumbers in the

filtered output. It is clearly not possible for both L1 and L4 to be odd integer multiples of ∆x.

The preferred implementation of the Parzen smoother with uniformly spaced data is therefore as

a single pass of (2.9) with the piecewise cubic weighting (2.12) and L4 equal to an odd integer

multiple of ∆x.

The weighting function (2.12) and the square of the filter transfer function (2.10) of the Parzen

smoother are shown for the case of L4 = 1 km in Figure 3. This is equivalent to a span of

L1 = L4/4 = 0.25 km for each of the four passes of the uniform-weighted running average (2.3).
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For a given value of L1, it can be noted from (2.6) and (2.11) that the filter cutoff wavenumber

kc is a factor of 0.228/0.443 ≈ 1/2 smaller for the Parzen smoother than for the single-pass uniform-

weighted running average. The Parzen smoother is thus a stronger low-pass filter, i.e., it restricts

the filtered output to lower wavenumbers and hence longer wavelengths.

To achieve the same half-power filter cutoff wavenumber kc with both the uniform-weighted

running average and the Parzen smoother, the span L4 can be adjusted accordingly. A Parzen

smoother with a span of L4 = 2 km, for example, has a half-power filter cutoff wavenumber of

kc = 0.455 cpkm (cycles per km). As shown in the middle panel of Figure 4, this is very close

to the half-power filter cutoff wavenumber of kc = 0.443 cpkm for the uniform-weighted running

average with a span of L1 = 1 km that was shown previously in Figure 2. Note again the much

smaller side lobes of the filter transfer function of the Parzen smoother compared with those of

the uniform-weighted running average. This improved side lobe suppression comes at the price

of somewhat more gradual roll off through the filter cutoff wavenumber kc of the filter transfer

function of the Parzen smoother (see the middle panel of Figure 4).

2c. Onboard Pre-Processing of SWOT Data

The present plan2 is to smooth the raw SWOT data in the onboard processor to achieve the

science requirement of 1 km × 1 km resolution for ocean observations. (The accuracy requirement

for these onboard pre-processed estimates of SSH is derived in Section 3d.) As noted previously,

this resolution will be achieved using a Blackman-Harris smoother in the along-track direction and

a Parzen smoother in the cross-track direction. The parameters of these two smoothers have been

chosen by the SWOT Project Office so that their filter transfer functions are nearly identical. The

filtering properties of the onboard pre-processed estimates of SSH are therefore discussed here in

the context of the Parzen smoother that was examined in detail in Section 2b.

The resolution of smoothed estimates of SSH could be defined in a variety of ways. The

definition in the SWOT onboard processing document2 is based on the lagged autocorrelation

function associated with the Parzen smoother. This autocorrelation function can be determined by

noting that the square of the filter transfer function (2.10) of the Parzen smoother is proportional to

the power spectral density of the low-pass filtered output of the Parzen smoother applied to data

consisting of uncorrelated (“white”) noise [see (2.21b) in Section 2e below with the white noise

spectrum of unfiltered onboard SWOT data on the right side of the equation defined by (2.23)].

The autocorrelation of this filtered output can be obtained as the inverse Fourier transform of

its power spectral density, i.e., as the inverse Fourier transform of the squared value of the filter

transfer function (2.10) of the Parzen smoother.

In the x dimension, the lagged autocorrelation function for a Parzen smoother with a span of

L4 is thus given by

R(x) =

∫ ∞
−∞

sinc8

(
kL4

4

)
ei2πkx dk = 2

∫ ∞
0

sinc8

(
kL4

4

)
cos(2πkx) dk . (2.13)

This can be evaluated with the help of integral tables. The result is a piecewise continuous 7th-order

polynomial that is symmetric about lag x = 0. This is shown for positive lags x in the bottom

panel of Figure 4 for a span of L4 = 2 km.
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The scale of features that can be resolved in the smoothed data is based somewhat subjectively

on the lag at which the autocorrelation decays to a value of 0.5. For a Parzen smoother with a span

of L4 = 1 km, it can be shown that an autocorrelation of 0.5 occurs at a lag of x = 0.248 km. Since

the autocorrelation is symmetric about zero lag, this can be interpreted as the radius of features

that can be resolved. The feature diameter resolution after filtering with a Parzen smoother with

a span of L4 = 1 km is therefore approximately 0.5 km.

Doubling the span L4 of the Parzen smoother doubles the lag at which the autocorrelation

decays to a value of 0.5 (see the bottom panel of Figure 4), and hence doubles the feature resolution

scale of the smoothed SSH estimates. The Parzen smoother with a span of L4 = 2 km shown in

Figure 4 thus has a feature diameter resolution capability of ∼1 km. It can be seen from the bottom

panel of Figure 4 that the autocorrelation function for this Parzen smoother decays to a very small

value of 0.050 at a lag of 1 km. Smoothed estimates of SSH with a Parzen smoothing span of

L4 = 2 km are therefore essentially uncorrelated at a lag of 1 km.

The requirement for the onboard pre-processing of SWOT data is for SSH estimates on a

1 km × 1 km grid to be statistically uncorrelated. From the discussion above, this can be achieved

using a 2-dimensional Parzen smoother with a span of L4 = 2 km in each dimension5. In the x

dimension, the half-power filter cutoff wavenumber (2.11) for this span is kc ≈ 0.5 cpkm (see the

middle panel of Figure 4), which is also the Nyquist wavenumber for a sample interval of ∆x = 1 km.

The resolution and sampling requirements for the onboard pre-processed SWOT estimates of SSH

can thus be achieved using a Parzen smoother with a span of L4 = 2 km in each dimension, and

posting of the smoothed SSH estimates on a 1 km × 1 km grid6.

2d. The Feature Diameter Resolution of SSH in Ground-Based Post-Processing of SWOT Data

Most oceanographic applications of SWOT data will require additional smoothing of the on-

board pre-processed estimates of SSH to reduce the uncorrelated measurement noise. The formalism

developed in Section 2c is extended in this section to characterize the feature resolution in SSH fields

smoothed in ground-based post-processing with any desired half-power filter cutoff wavenumbers

kc and lc in the x and y dimensions.

For the case of the Parzen smoother considered above, it was shown in Figure 4 that smoothing

SSH in the x dimension with a span of L4 = 2 km results in an autocorrelation of 0.5 at a lag of

about 0.5 km and therefore a feature diameter resolution scale of about 1 km. More generally, the

feature diameter resolution scale for a Parzen smoother in the x dimension with an arbitrary span

of L4 is

Feature Diameter Resolution ≈ L4

2
. (2.14a)

Since the half-power filter cutoff wavenumber (2.11) for a Parzen smoother with a span of L4 is

kc ≈ L−1
4 , the feature diameter resolution scale (2.14a) can be expressed equivalently in terms of

the half-power filter cutoff wavenumber as

Feature Diameter Resolution ≈ 1

2kc
. (2.14b)
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In terms of half-power filter cutoff wavelength λc = k−1
c , this is

Feature Diameter Resolution ≈ λc
2
. (2.14c)

While the details of the filter transfer function differ for different smoothers, every smoother

can be characterized by the half-power filter cutoff wavenumber kc for a particular choice of the

parameters of the filter (e.g., the span L4 for the case of the Parzen smoother). The primary dis-

tinctions between different smoothers are in their abilities to reduce the large-amplitude side-lobes

of the filter transfer function of the uniform-weighted running average considered in Section 2a.

Regardless of the specific formulation of the smoothing procedure, the relationships (2.14b) and

(2.14c) between feature diameter resolution and filter cutoff wavenumber kc or wavelength λc de-

veloped for the Parzen smoother are approximately applicable to any smoother.

The preceding analysis clarifies the relation between the autocorrelation-based definition

(2.14a) of feature diameter resolution and the half-power filter cutoff wavelength λc = k−1
c that is

often used by oceanographers to characterize the resolution of filtered SSH fields. From (2.14c),

the feature diameter resolution of SSH fields smoothed with a half-power filter cutoff wavenumber

kc is half as large as the wavelength resolution λc = k−1
c . This definition of resolution is coarser by

25% than the feature diameter resolution of 0.4λc as defined by Chelton et al. (2011)7.

2e. Reduction of Uncorrelated Error Variance in Ground-Based Post-Processing of SWOT Data

The variance of the uncorrelated errors in the onboard pre-processed SWOT estimates of SSH

can be reduced to any desired level with sufficient smoothing in ground-based post-processing. The

objective of this section is to quantify the reduction that can be expected for given choices of the

half-power filter cutoff wavenumbers kc and lc of the smoothing in the x and y dimensions. The

multiplicative reduction factor derived in this section is used later in Section 3e to quantify the

residual uncorrelated error variance in SSH fields after smoothing the onboard pre-processed SWOT

data in ground-based post-processing with arbitrary user-specified filter cutoff wavenumbers.

To illustrate the filtering of SWOT data in ground-based post-processing, the weighting func-

tion, squared filter transfer function and lagged autocorrelation function are shown by the green

lines in Figure 5 for the case of a Parzen smoother in the x dimension with a span of L4 = 14 km.

The blue lines in Figure 5 correspond to a uniform-weighted running average with a span of

L1 = L4/2 = 7 km. It can be seen that the half-power filter cutoff wavenumber and the lag

at which the autocorrelation decays to a value of 0.5 for this uniform-weighted running average are

essentially the same as those of the Parzen smoother with a span of L4 = 14 km. Note again the

superior performance of the Parzen smoother in terms of side lobe suppression.

A rigorous estimate of the amount by which filtering with the Parzen smoother reduces the

variance of uncorrelated errors compared with block averaging (i.e., compared with the uniform-

weighted running average) can be derived from the filter transfer functions (2.4) and (2.10) of

the two smoothers. As discussed in Section 2c, present plans2 are for the raw SWOT data to be

filtered onboard the satellite and posted on a grid with dimensions ∆x ×∆y = 1 km × 1 km on

which the pre-processed estimates of SSH are statistically uncorrelated. Consider a 1-dimensional

discretely sampled spatial series ε(xm) of errors in the onboard estimates of SSH at M locations
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xm = m∆x, m = 0, 1, . . . ,M − 1. The discrete Fourier transform of this spatial series of errors in

the x dimension is

E(km′) =
1

M

M−1∑
m=0

ε(xm) e−i2πkm′m∆x =
1

M

M−1∑
m=0

ε(xm) e−i2πm
′m/M , (2.16)

where km′ = m′∆k, m′ = (−M/2 + 1), (−M/2 + 2), . . . , 0, . . . ,M/2 are the Fourier wavenumbers

that are separated by the constant interval ∆k = (M∆x)−1 that is defined by the record length

M∆x. The 1-dimensional wavenumber power spectral density is defined in terms of the discrete

Fourier transform (2.16) to be

Σ1d(km′) =
1

∆k
E∗(km′)E(km′), m′ = (−M/2 + 1), (−M/2 + 2), . . . , 0, . . . ,M/2 . (2.17)

The asterisk in this expression denotes the complex conjugate.

Since ε(xm) is a real variable, it is easy to show that the spectrum (2.17) is symmetric, i.e.,

Σ1d(−km′) = Σ1d(km′). It is therefore conventional to double the 1-dimensional sample power

spectral density values (2.17) at all but the wavenumbers corresponding to indices m′ = 0 and M/2

and display the spectrum over only the positive wavenumbers. The index m′ = M/2 corresponds to

the Nyquist wavenumber kN ≡ (2∆x)−1 that is the highest resolvable wavenumber for the discrete

sample interval ∆x. The 1-sided representation of the 1-dimensional wavenumber sample power

spectral density, which will be denoted with a prime, is thus related to the 2-sided, 1-dimensional

wavenumber sample power spectral density (2.17) by

Σ′1d(km′) =

{
Σ1d(km′) if m′ = 0 or M/2

2 Σ1d(km′) otherwise.
(2.18)

Analogous to the expressions (2.1) and (2.9) for the output after filtering with the uniform-

weighted running average and the Parzen smoother, the output ε(xm) of an arbitrary linear filter

applied to the errors ε(xm) in the onboard estimates of SSH can be written as a convolution

ε(xm) = w(xm) ∗ ε(xm) , (2.19)

where w(xm) is the filter weighting function for the specific linear filter. By the Convolution

Theorem, this can be written as multiplication in the wavenumber domain,

E(km′) = W (km′)E(km′) , (2.20)

where E(km′) and W (km′) are the discrete Fourier transforms at wavenumber km′ of the filtered

output ε(xm) and the weighting function w(xm) of the linear filter. The 1-sided power spectral

density of the filtered output can thus be expressed in terms of the 1-sided power spectral density

(2.17) of the unfiltered errors by8

Σ
′
1d(km′) =

2

∆k
E
∗
(km′)E(km′) (2.21a)

= W ∗(km′)W (km′) Σ′1d(km′) . (2.21b)
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Parseval’s Theorem for the sample variance σ2
ε of the uncorrelated errors in the 1 km × 1 km

SWOT data can be expressed in terms of either the 2-sided, 1-dimensional power spectral density

(2.17) or the 1-sided, 1-dimensional power spectral density (2.18) in the x dimension as

σ2
ε =

M/2∑
m′=−M/2+1

m′ 6= 0

Σ1d(km′) ∆k =

M/2∑
m′=1

Σ′1d(km′) ∆k . (2.22)

Note that the zero wavenumber corresponding to the index m′ = 0 is excluded from the sum

(2.22). This is because the power spectral density at zero wavenumber is equivalent to the square

of the mean value, which does not contribute to the sample variance. Since the errors ε(xm) are

uncorrelated on the ∆x = 1 km grid (see Section 2c), the wavenumber sample power spectral

density Σ′1d(km′) is constant at all wavenumbers km′ . Uncorrelated errors are therefore referred to

as “white noise” in analogy with the constant electromagnetic spectrum of the color white. The

constant white-noise spectral value obtained from (2.22) with ∆k = (M∆x)−1 is

Σ′1d(km′) =
σ2
ε

(M/2)∆k
=

σ2
ε

kN
, m′ = 0, 1, . . . ,M/2 , (2.23)

where kN = (2∆x)−1 is the Nyquist wavenumber defined previously.

Parseval’s Theorem for the sample variance σ2
ε of the residual uncorrelated errors ε(xm) af-

ter smoothing of the onboard SWOT data can similarly be expressed in terms of its 1-sided,

1-dimensional power spectral density (2.21) as

σ2
ε =

M/2∑
m′=1

Σ
′
1d(km′) ∆k .

Substituting (2.21b) and (2.23) into the right side of this equation gives

σ2
ε =

M/2∑
m′=1

W ∗(km′)W (km′) Σ′1d(km′) ∆k =
σ2
ε

kN

M/2∑
m′=1

W ∗(km′)W (km′) ∆k . (2.24a)

It is readily seen from (2.4) and (2.10) that the filter transfer functions W1(k) and W4(k) for the

cases of the uniform-weighted running average and the Parzen smoother are both real. This is a

general property of symmetric smoothers. For any symmetric linear filter, (2.24a) thus becomes

σ2
ε =

σ2
ε

kN

M/2∑
m′=1

W 2(km′) ∆k . (2.24b)

Equation (2.24b) can be interpreted as a discretized statement that the sample variance of

smoothed white-noise errors is equal to the integrated area under the squared filter transfer function.

This is easily seen by considering the limit as the record length M∆x approaches infinity. The

wavenumber interval ∆k = (M∆x)−1 then becomes an infinitesimally small value dk and the
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discrete wavenumbers km′ become continuous. The subscript m′ can then be dropped and the

discrete summation becomes an integral so that (2.24b) can be written as

σ2
ε =

σ2
ε

kN

∫ kN

0

W 2(k) dk . (2.25)

The variance of the discretely sampled smoothed white-noise errors ε(xm) with infinitely long record

length M∆x is thus proportional to the area under the squared value of the filter transfer function

integrated from the zero wavenumber to the Nyquist wavenumber kN = (2∆x)−1. The Nyquist

wavenumber that defines the upper bound of the integral is imposed by the discrete sample interval

∆x, regardless of the record length M∆x. [As noted above, the zero wavenumber at the lower

bound of the integral (2.25) must be excluded from the discretized form (2.24b) of this integral

since it does not contribute to the sample variance.]

It is well known that block averaging of L uncorrelated errors ε(xm) in uniform-weighted

running averages with a span of L1 = L reduces the uncorrelated error variance σ2
ε by a factor of

L. It can be anticipated from the close agreement of the half-power filter cutoff wavenumbers of

the two filter transfer functions in Figure 5 that approximately the same variance reduction factor

of L can be achieved using a Parzen smoother with a span of L4 = 2L. An approximate analytical

expression for the ratio of the variances σ2
1 and σ2

4 of, respectively, uniform-weighted and Parzen-

weighted running averages of uncorrelated white noise can be derived from (2.25) by considering

the ratio

R =
σ2

4

σ2
1

=

∫ kN

0

W 2
4 (k) dk∫ kN

0

W 2
1 (k) dk

=

∫ kN

0

sinc8(kL) dk∫ kN

0

sinc2(kL) dk

, (2.26)

where W1(k) and W4(k) are the filter transfer functions (2.4) and (2.10) of the uniform-weighted

running average with a span of L1 = L and the Parzen smoother with a span of L4 = 4L. The latter

yields sinc4(kL) on the right side of the expression (2.10) for the filter transfer function W4(k) of

the Parzen smoother.

Exact analytical solutions cannot be obtained analytically for the two integrals on the right

side of (2.26). However, solutions can be found in integral tables if the upper bound of the integrals

is ∞ rather than the Nyquist wavenumber kN . The ratio (2.26) can thus be rewritten as

R =

I8 −
∫ ∞
kN

sinc8(kL) dk

I2 −
∫ ∞
kN

sinc2(kL) dk

, (2.27a)

where

I2 =

∫ ∞
0

sinc2(kL) dk =
1

2L
(2.27b)

I8 =

∫ ∞
0

sinc8(kL) dk =
151

630L
(2.27c)

12



The solutions (2.27b) and (2.27c) for I2 and I8 are derived from the general solution obtained from

integral tables for the integral from 0 to ∞ of sinc p(kL) with p = 2 and 8.

Because the side lobes of sinc8(kL) decay so much faster than the side lobes of sinc2(kL) (see

Figures 2–5), the correction term in the numerator of (2.27a) is much smaller than the correction

term in the denominator. The ratio of variances of uncorrelated errors smoothed with the Parzen

smoother and the uniform-weighted running average can therefore be approximated as

R ≈ I8

I2 −
∫ ∞
kN

sinc2(kL) dk

, (2.28)

By approximating each of the side lobes of sinc2(kL) as rectangles, it can be shown that the

correction term in the denominator of this equation is approximately π−2L−2 for sufficiently large

L. The ratio (2.28) of variances of Parzen-weighted and uniform-weighted running averages then

becomes

R ≈ I8

I2 − π−2L−2 . (2.29)

The analytical approximation (2.29) for R is shown by the dots in Figure 6 for values of L

ranging from 2 km to 25 km. For comparison, the solid line corresponds to the exact solution

obtained by numerical integration of the numerator and denominator of (2.26) with kN = (2∆x)−1

and a sample interval of ∆x = 1 km. The analytical approximation is slightly too large for L = 2 km

but is indistinguishable from the numerical solution for L > 2 km. It is thus seen that the large

L approximation (2.29) is applicable to all practical choices of smoothing of the 1 km × 1 km

onboard pre-processed SWOT estimates of SSH. The ratio R is 0.5 for L = 5 km. It is slightly

larger than 0.5 for L < 5 km and slightly smaller than 0.5 for L > 5 km. For all intents and

purposes, however, R can be considered to have a value of 0.5 for any choice of L ≥ 2 km. In

other words, the residual variance σ2
4 of white-noise errors smoothed using a Parzen smoother with

a span of L4 = 4L is about half as large as the residual variance σ2
1 of white noise errors smoothed

using a uniform-weighted running average with a span of L1 = L. Halving the span of the Parzen

smoother to L4 = 2L doubles the variance σ2
4 , thus resulting in essentially the same variance σ2

1

as the uniform-weighted running average with a span of L1 = L. The Parzen smoother with span

L4 = 2L has slightly higher variance for L < 5 and slightly lower variance for L > 5.

The above analysis in one dimension can be extended straightforwardly to the case of filtering

in two dimensions. A Parzen smoother with a 2-dimensional span of L4(x) = Lx∆x in the x

dimension and L4(y) = Ly∆y in the y dimension achieves approximately the same error variance

reduction as block averaging of Lx/2× Ly/2 of the 1 km × 1 km onboard pre-processed estimates

of SSH. The number of independent measurements in a Parzen smoothed estimate of SSH with

spans of Lx∆x×Ly∆y is thus approximately LxLy/4. The multiplicative error variance reduction

factor for the Parzen smoother is therefore

Multiplicative Error Variance Reduction Factor ≈ 4

LxLy
. (2.30a)
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For the case shown in Figure 5, the Parzen smoother with a span of 14 km × 14 km achieves

essentially the same error variance reduction as block averaging the 1 km × 1 km onboard pre-

processed estimates of SSH over a 7 km × 7 km area, but with better filtering properties (see

Figure 5). Since the onboard pre-processed estimates of SSH at 1 km× 1 km spacing are statistically

uncorrelated (see Section 2c), the variance of their uncorrelated errors is reduced by a multiplicative

factor of approximately 1/72 = 1/49 in the SSH fields smoothed in ground-based post-processing

using a Parzen smoother with a 2-dimensional span of 14 km × 14 km.

Because the half-power filter cutoff wavenumber (2.11) of the Parzen smoother is kc ≈
(Lx∆x)

−1
in the x dimension and lc ≈ (Ly∆y)

−1
in the y dimension, a 2-dimensional span of

Lx∆x×Ly∆y can be expressed alternatively as approximately k−1
c × l−1

c . This smoothing is anal-

ogous to block averaging of (2∆x kc)
−1 × (2∆y lc)

−1 of the 1 km × 1 km onboard pre-processed

estimates of SSH. The reduction of uncorrelated error variance after smoothing the onboard esti-

mates of SSH with a Parzen smoother with these half-power filter cutoff wavenumbers is thus

Multiplicative Error Variance Reduction Factor ≈ 4 ∆x∆y kc lc. (2.30b)

For smoothing with a half-power filter wavelength of λc = k−1
c = l−1

c in both dimensions, this

becomes

Multiplicative Error Variance Reduction Factor ≈ 4 ∆x∆y

λ2
c

. (2.31)

The multiplicative error reduction factor (2.30b) derived above for the Parzen smoother pro-

vides an approximate characterization of the reduction of uncorrelated error variance for other

smoothers with parameters chosen to give the same filter cutoff wavenumbers kc and lc. The resid-

ual uncorrelated error variance after filtering with arbitrary user-specified filter cutoffs is quantified

in Section 3e after the white noise error variance σ2
ε of the onboard pre-processed SWOT data

without smoothing is derived in Section 3d based on the science requirement specification in terms

of hypothetical filtering with an idealized smoother.

3. Noise of SWOT Estimates of SSH

The uncorrelated errors of the onboard pre-processed SWOT estimates of SSH are most easily

characterized in terms of an error variance. However, as noted in the Introduction and shown

by the dotted red line in Figure 1 (see also Figure 7 below), the SWOT data are also subject

to long-wavelength measurement errors with variance that increases with decreasing wavenumber

(increasing wavelength). To be compatible with a spectral specification of long-wavelength mea-

surement errors, the SWOT documentation characterizes the uncorrelated measurement errors as

a white-noise spectrum rather than an error variance.

The manner in which the white-noise spectrum of measurement errors is specified in the SWOT

documentation1,2,3 is not useful to oceanographic users for two reasons. Firstly, the white noise

errors are specified only for filtered SWOT data, and, moreover, for the case of idealized but

unrealizable filtering. And secondly, this spectral representation of residual uncorrelated errors is

not easily transformed into a variance that can be used to assess the limitations of 2-dimensional

maps of SWOT data for investigation of submesoscale variability. To be able to quantify the
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residual noise after user-specific smoothing of the SWOT data in ground-based post-processing, the

uncorrelated error variance of the onboard pre-processed SWOT estimates of SSH must be specified.

Converting the white noise spectrum as formulated in the the SWOT science requirement to a form

that is useful to users requires a detailed and tedious derivation of the mathematical formalism for

the relationships between the 2-dimensional wavenumber spectrum, the 1-dimensional (e.g., along-

track) wavenumber spectrum and the variance. These relationships are presented in Sections 3a–c.

The analysis proceeds as follows. The spectral representation of uncorrelated error variance

is derived in Section 3a in terms of the 2-dimensional wavenumber power spectral density, and

in Section 3b in terms of the along-track 1-dimensional wavenumber power spectral density. The

latter is the basis for the science requirement specification of uncorrelated measurement errors.

This science requirement explicitly includes hypothetical smoothing of the onboard pre-processed

SWOT estimates of SSH in ground-based post-processing with an idealized low-pass filter that has

a specific half-power filter cutoff wavelength of λc = k−1
c = l−1

c = 15 km in both dimensions.

A general discussion of the spectral characteristics of smoothed SWOT data, and the resulting

reduction of measurement noise, are presented in Section 3c. While an idealized filter cannot be

implemented in practice, the hypothetical result allows a derivation in Section 3d of the uncorrelated

error variance in the onboard pre-processed SWOT estimates of SSH. In particular, the systematic

development in Sections 3a–c ultimately yields equation (3.14c) below that relates the uncorrelated

error variance σ2
ε of the onboard pre-processed SWOT estimates of SSH on the right side of the

equation to the along-track 1-dimensional wavenumber spectrum on the left side of the equation

that is the science requirement specification after hypothetical idealized smoothing. This equation

is used in Section 3d to determine the accuracy requirement for the unsmoothed onboard pre-

processed SWOT estimates of SSH.

For practical use, a general characterization of the residual uncorrelated error variance in

ground-based post-processing of SWOT data after smoothing with a realizable 2-dimensional low-

pass filter is given in Section 3e in a general form that is applicable to any user-specified half-power

filter cutoffs. This provides the information needed by oceanographic users to quantify the residual

noise in SWOT estimates of SSH after applying their specific choice of smoothing of the onboard

pre-processed SWOT data.

3a. The 2-Dimensional Spectrum of White Noise

Consider a 2-dimensional spatial field h(x, y) of SSH sampled at discrete locations (xm, yn) for

xm = m∆x, m = 0, 1, . . .M − 1 and yn = n∆y, n = 0, 1, . . . , N − 1, where ∆x and ∆y are the

sample intervals in the x and y dimensions. The sample variance σ2
h of this spatial field is related to

its 2-dimensional wavenumber sample power spectral density S2d(km′ , ln′) at wavenumbers km′ =

m′/(M∆x) and ln′ = n′/(N∆y) by Parseval’s Theorem,

σ2
h =

M/2∑
m′=−M/2+1

m′ 6= 0

N/2∑
n′=−N/2+1

n′ 6= 0

S2d(km′ , ln′) ∆l∆k, (3.1)
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where

∆k =
1

M∆x
(3.2a)

∆l =
1

N∆y
(3.2b)

are the discrete Fourier wavenumber intervals that are defined by the record lengths M∆x and N∆y

in the x and y dimensions. Equation (3.1) is the 2-dimensional extension of Parseval’s Theorem

(2.22) in one dimension that was considered in Section 2e. As in the 1-dimensional case, the zero

wavenumbers corresponding to indices m′ = n′ = 0 are excluded from the sums in (3.1) because the

spectral values at these wavenumbers correspond to the squared value of the sample mean, which

does not contribute to the sample variance σ2
h. The indices m′ = M/2 and n′ = N/2 that define

the upper limits of the summations in (3.1) correspond to the Nyquist wavenumbers kN and lN in

the x and y dimensions, respectively, that are defined for the discrete sample intervals ∆x and ∆y

to be

kN =
M

2
∆k =

M

2

1

M∆x
=

1

2∆x
(3.3a)

lN =
N

2
∆l =

N

2

1

N∆y
=

1

2∆y
. (3.3b)

The 2-dimensional form (3.1) of Parseval’s Theorem can be interpreted as a discretized state-

ment that the sample variance is equal to the volume under the 2-dimensional wavenumber sample

power spectral density. Analogous to the 1-dimensional case considered in Section 2e, this is easily

seen by considering the limit as the record lengths M∆x and N∆y in the x and y dimensions

approach infinity. The wavenumber intervals ∆k and ∆l then become infinitesimally small values

dk and dl and the discrete wavenumbers km′ and ln′ become continuous. The subscripts m′ and n′

can then be dropped and the discrete summations become integrals so that (3.1) can be written in

simpler form as9

σ2
h =

∫ kN

−kN

∫ lN

−lN
S2d(k, l) dl dk . (3.4)

The variance of the discretely sampled spatial field h(xm, yn) with infinitely long record lengths

M∆x and N∆y in the two dimensions is thus the integrated volume under the 2-dimensional

sample power spectral density. A point that is important to the analysis in Sections 3c and 3d is

that the ranges of integration are finite. The Nyquist wavenumbers (3.3) that define the lower and

upper bounds of the integrals are imposed by the discrete sample intervals ∆x and ∆y, regardless

of the record lengths M∆x and N∆y.

The integral representation (3.4) of Parseval’s Theorem greatly simplifies the notation in the

analysis that follows. It should be kept in mind, however, that the resolutions (3.2a,b) of the

wavenumbers k and l in the x and y dimensions are finite and are imposed by the finite record

lengths M∆x and N∆y.

For the contribution of uncorrelated errors ε(x, y) with variance σ2
ε to the total SSH variance

σ2
h, the 2-dimensional wavenumber sample power spectral density is constant at all wavenumbers
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k and l (i.e., “white”). This constant value can be defined to be Σ2d. Then Parseval’s Theorem

(3.4) for the spatially uncorrelated measurement error contribution to the variance of the SSH

measurements reduces to

σ2
ε =

∫ kN

−kN

∫ lN

−lN
Σ2d dl dk = 4kN lNΣ2d =

Σ2d

∆x∆y
.

The constant 2-dimensional power spectral density for a specified white noise error variance σ2
ε is

therefore

Σ2d(k, l) = ∆x∆y σ2
ε , for − kN ≤ k ≤ kN and − lN ≤ l ≤ lN . (3.5)

3b. The 1-Dimensional Spectrum of White Noise

The 1-dimensional wavenumber sample power spectral density of h(x, t) in the x dimension

(which could be defined to be parallel to the satellite ground track) can be obtained from the

2-dimensional wavenumber sample power spectral density by integrating over all wavenumbers in

the y dimension,

S1d(k) =

∫ lN

−lN
S2d(k, l) dl , for − kN ≤ k ≤ kN . (3.6)

Since h(x, y) is a real variable, the 1-dimensional wavenumber sample power spectral density is

symmetric, i.e., S1d(−k) = S1d(k). As discussed in Section 2e, it is therefore conventional to

double10 the 1-dimensional sample power spectral density values (3.6) and display them over only

the positive wavenumbers k. This 1-sided representation of the 1-dimensional wavenumber sample

power spectral density, which will be denoted as in Section 2e with a prime, is thus related to the

2-sided, 1-dimensional wavenumber sample power spectral density S1d(k) and the 2-dimensional

wavenumber sample power spectral density S2d(k, l) by

S′1d(k) = 2S1d(k) = 2

∫ lN

−lN
S2d(k, l) dl , for 0 ≤ k ≤ kN . (3.7)

The 1-sided, 1-dimensional sample power spectral density for the specified white noise variance

σ2
ε can thus be related to the constant 2-dimensional white noise spectrum Σ2d by

Σ′1d(k) = 4lN Σ2d =
2Σ2d

∆y
, for 0 < k ≤ kN . (3.8a)

From (3.5), this constant 1-sided, 1-dimensional white noise spectrum can be expressed in terms of

the uncorrelated error variance σ2
ε as

Σ′1d(k) = 2∆xσ2
ε , for 0 < k ≤ kN . (3.8b)

3c. Spectral Characteristics of Smoothed SWOT Data

As described in Section 2c, the present plan2 for onboard pre-processed estimates of SSH can

be understood by considering smoothing of the raw SWOT data in the form of a 2-dimensional
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Parzen smoother with a span of L4(x)× L4(y) = 2 km× 2 km. The present plan further calls for

posting of the onboard pre-processed estimates of SSH on a 2-dimensional grid with dimensions

∆x × ∆y = 1 km × 1 km. The variance σ2
ε of the uncorrelated errors in these onboard pre-

processed SWOT estimates of SSH could be reduced in ground-based post-processing by applying

2-dimensional block averaging over J ×K pre-processed estimates of SSH. Since the 1 km × 1 km

onboard estimates of SSH are statistically uncorrelated (see Section 2c), the J ×K block averaging

reduces the uncorrelated error variance σ2
ε by a multiplicative factor of (JK)−1. The residual noise

variance in the post-processed estimates of SSH after block averaging would thus be

σ2
ε =

σ2
ε

JK
. (3.9)

As in Section 2d, the overbar distinguishes the variance σ2
ε of the residual uncorrelated errors in

the ground-based post-processed estimates of SSH from the variance σ2
ε of the uncorrelated errors

of the onboard pre-processed estimates of SSH.

In practice, block averaging of the onboard pre-processed SWOT estimates of SSH is undesir-

able. When such block averages are constructed as overlapping averages on the 1 km × 1 km grid,

this is equivalent to 2-dimensional running averages of the SWOT data. As discussed in Section 2b,

smoothing with the Parzen smoother has much better filter side-lobe suppression (see Figure 5).

From (2.30a) with Lx = 2J and Ly = 2K, smoothing the onboard pre-processed SWOT estimates

of SSH using a 2-dimensional Parzen smoother with a span of L4(x) × L4(y) = 2J∆x × 2K∆y

reduces the variance of the uncorrelated errors by a multiplicative factor of (JK)−1 (see Figure 5 for

the case of J = K = 7 and ∆x = ∆y = 1 km). From (2.11), the half-power filter cutoff wavenum-

bers of post-processed estimates of SSH obtained by 2-dimensional Parzen smoothing with spans

of L4(x) = 2J∆x and L4(y) = 2K∆y are

kc ≈
1

2J∆x
(3.10a)

lc ≈
1

2K∆y
(3.10b)

Parseval’s Theorem in the integral form (3.4) that relates the variance σ2
h of the post-processed

estimates of SSH to the 2-dimensional power spectral density S2d(k, l) of the post-processed esti-

mates of SSH is

σ2
h =

∫ kN

−kN

∫ lN

−lN
S2d(k, l) dl dk . (3.11a)

For the discretized samples and spectra, it is assumed in (3.11a) that the post-processed estimates

of SSH obtained after smoothing with filter cutoff wavenumbers of kc and lc are constructed at the

same M ×N grid locations (xm, yn) as the onboard pre-processed estimates of SSH. The Nyquist

wavenumbers kN and lN in (3.11a) are thus unchanged from (3.3a,b).

Neglecting the imperfections of the filter transfer function of the smoothing applied in the

ground-based post-processing of the onboard pre-processed SWOT estimates of SSH (i.e., the grad-

ual rolloff of the filter transfer function through the filter cutoff wavenumbers kc and lc and the

side lobes at wavenumbers higher than kc and lc), the 2-dimensional wavenumber power spectral
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density S2d(k, l) of the post-processed SWOT data after smoothing is zero for all wavenumbers

|k| > kc and |l| > lc. Parseval’s Theorem (3.11a) for the post-processed estimates of SSH can thus

be written with truncated ranges of integration as

σ2
h =

∫ kc

−kc

∫ lc

−lc
S2d(k, l) dl dk . (3.11b)

Analogous to (3.7), the 1-sided, 1-dimensional (e.g., along-track) wavenumber power spectral

density of the post-processed SSH estimates after smoothing can be obtained from the 2-dimensional

wavenumber power spectral density S2d(k, l) of the post-processed SSH estimates by

S
′
1d(k) = 2

∫ lN

−lN
S2d(k, l) dl .

Again neglecting imperfections of the filter transfer function of the smoothing applied to the pre-

processed SWOT estimates of SSH, this can be written equivalently with a truncated range of

integration as

S
′
1d(k) =

 2

∫ lc

−lc
S2d(k, l) dl if 0 ≤ k ≤ kc

0 otherwise.

(3.12)

The 2-dimensional white-noise wavenumber sample power spectral density of the residual un-

correlated errors in the post-processed SSH estimates after smoothing can be denoted as Σ2d. From

Parseval’s Theorem (3.11b), the noise contribution (3.9) to the variance of the post-processed SSH

estimates reduces to

σ2
ε =

∫ kc

−kc

∫ lc

−lc
Σ2d dl dk = 4kclc Σ2d .

The 2-dimensional power spectral density of the residual white noise in the post-processed estimates

of SSH for the idealized low-pass filter considered here is thus related to the residual noise variance

σ2
ε by

Σ2d(k, l) =


σ2
ε

4kclc
if −kc ≤ k ≤ kc and −lc ≤ l ≤ lc

0 otherwise.

(3.13a)

Substituting (3.9) for σ2
ε expresses this equivalently in terms of the variance σ2

ε of the onboard

pre-processed estimates of SSH without filtering as

Σ2d(k, l) =


σ2
ε

4kclcJK
if −kc ≤ k ≤ kc and −lc ≤ l ≤ lc

0 otherwise.

(3.13b)

With the expressions (3.10a,b) for the filter cutoff wavenumbers kc and lc, this gives

Σ2d(k, l) =

{
∆x∆y σ2

ε if −kc ≤ k ≤ kc and −lc ≤ l ≤ lc
0 otherwise.

(3.13c)
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For wavenumbers |k| ≤ kc and |l| ≤ lc, the 2-dimensional power spectral density values for the

filtered white noise are thus unchanged from the constant spectral values (3.5) of the unfiltered

white noise. Filtering with the idealized filter transfer function considered here thus eliminates the

2-dimensional white noise power spectral density only at wavenumbers |k| > kc and |l| > lc.

From (3.12), the residual uncorrelated noise contribution (3.9) to the 1-sided, 1-dimensional

power spectral density in the post-processed SSH estimates after smoothing with the idealized filter

considered here is

Σ
′
1d(k) =

{
4lcΣ2d if 0 < k ≤ kc

0 otherwise.
(3.14a)

Substituting (3.13a) for Σ2d, the 1-sided, 1-dimensional power spectral density of the residual noise

in terms of the residual noise variance σ2
ε after smoothing with an idealized filter can be written

equivalently as

Σ
′
1d(k) =


σ2
ε

kc
if 0 < k ≤ kc

0 otherwise.

(3.14b)

This 1-sided, 1-dimensional power spectral density can be expressed in terms of the variance σ2
ε

of the onboard pre-processed estimates of SSH without filtering by substituting (3.9) for σ2
ε and

(3.10a) for the filter cutoff wavenumber kc to get

Σ
′
1d(k) =


2∆xσ2

ε

K
if 0 < k ≤ kc

0 otherwise.

(3.14c)

In contrast to the 2-dimensional power spectral density (3.13c) that is unchanged in the low-

wavenumber pass band |k| ≤ kc and |l| ≤ lc, the smoothing in the y dimension reduces the 1-

dimensional power spectral density values (3.14c) within the pass band |k| ≤ kc in the x dimension

by a multiplicative factor of K−1 compared with the 1-dimensional white noise spectrum (3.8b) of

the unfiltered white noise. This perhaps non-intuitive point is critically important to the derivation

in Section 3d of the noise variance of the onboard pre-processed SWOT estimates of SSH from the

science requirement specification in terms of the 1-sided, 1-dimensional power spectral density of

SWOT data smoothed with a hypothetical idealized filter.

3d. White Noise Error Specification for SWOT Estimates of SSH

The procedure for specifying the variance σ2
ε of the uncorrelated errors in the onboard pre-

processed SWOT estimates of SSH on the 1 km × 1 km grid is to “work backwards” from a

specification of a baseline requirement for the residual uncorrelated errors in smoothed estimates

of SSH after hypothetical ground-based post-processing with a specific idealized 2-dimensional11

low-pass filter. As expressed by (2.30a) with Lx = Ly = 2J , 2-dimensional smoothing of the

1 km × 1 km onboard estimates of SSH with half-power filter cutoff wavenumbers of kc = lc =

(2J∆x)−1 reduces the uncorrelated error variance σ2
ε by a multiplicative factor of approximately

J−2. The science requirement for measurement accuracy could therefore be specified in terms of
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the variance of the residual uncorrelated errors in post-processed SSH estimates after idealized 2-

dimensional smoothing. Instead, however, the baseline requirement for instrument noise is specified

in terms of the 1-sided, 1-dimensional power spectral density (3.14) of the residual white noise after

smoothing with an idealized (but unrealizable) filter. In particular, the 1-sided, 1-dimensional

(along-track) wavenumber power spectral density of the residual white-noise component of the

total measurement errors is specified as

Σ
′
1d(k) = 2 cm2/cpkm, if 1/1000 ≤ k ≤ 1/15 cpkm. (3.15a)

The instrumental noise error is thus specified only for wavelengths λ = k−1 longer than a filter

cutoff wavelength of λc = k−1
c = 15 km.

While the science requirement (3.15a) for uncorrelated errors is specified in the form of a

1-sided, 1-dimensional along-track power spectral density, it is important to keep in mind that

one of the most significant contributions of the SWOT mission is that the KaRIn instrument will

measure SSH 2-dimensionally across a pair of 70-km swaths that straddle the satellite ground track

separated by a 20-km gap. Specification of the measurement errors as a 1-sided, 1-dimensional

spectrum allows a comparison of the SWOT performance with the accuracy and resolution of SSH

achieved from traditional nadir altimetry that measures SSH only along the satellite ground track.

Post-launch verification of the spectral specification (3.15a) of the residual uncorrelated mea-

surement errors would require filtering of the onboard pre-processed 1 km × 1 km SWOT estimates

of SSH. The error specification for idealized filtering would then have to be extended to wavenum-

bers higher than the filter cutoff of 1/15 cpkm, i.e.,

Σ
′
1d(k) = 0 , if 1/15 < k ≤ 1/2 cpkm. (3.15b)

The upper wavenumber of this specification is the Nyquist wavenumber (3.3a) for the planned

sample interval of ∆x = 1 km. The residual white noise error spectrum after smoothing with an

idealized filter is shown by the dashed red line in Figure 7.

The variance of the residual white noise in ground-based post-processed estimates of SSH after

smoothing with an idealized filter to eliminate variability with scales shorter than λc = 15 km can

be determined by inverting (3.14b) with Σ ′1d(k) given by (3.15) to obtain12

σ2
ε = kcΣ

′
1d =

Σ
′
1d

15
= 0.133 cm2. (3.16)

The requirement for ground-based post-processed estimates of SSH after filtering specifically with

the hypothetical idealized filter is thus that the residual uncorrelated errors after filtering have an

RMS value of 0.365 cm.

From (2.31), a filter cutoff wavelength of λc = k−1
c = l−1

c = 15 km in both dimensions

is equivalent to averaging over approximately λ2
c/(4∆x∆y) uncorrelated onboard pre-processed

estimates of SSH. The variance of the uncorrelated errors in the onboard pre-processed SWOT

data with ∆y = ∆x = 1 km can thus be determined by substituting (3.16) into (3.9) with J =

K = λc/2 ≈ 7.5, which gives13

σ2
ε = J2σ2

ε = 7.48 cm2. (3.17)
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The requirement for the 1 km × 1 km onboard pre-processed estimates of SSH is therefore that

the uncorrelated errors have an RMS value of 2.74 cm.

The uncorrelated measurement errors in the SWOT estimates of SSH are superimposed on the

previously noted spatially correlated (long-wavelength) measurement errors from orbit errors and

various environmental effects. The science requirement for these red-noise errors is that they have

a 1-sided, 1-dimensional (along-track) power spectral density no larger than

Sred1d (k) = 0.0125 k−2 cm2/cpkm, for 1/1000 < k < 1/15 cpkm, (3.18)

which is shown extended to higher wavenumbers by the dotted red line in Figure 7. It can be

seen from Figure 7 that smoothing with a half-power filter cutoff wavelength of λc = k−1
c = 15 km

would have very little attenuation effect on the red noise. The science requirement specification of

the along-track power spectral density of the total measurement errors in the SWOT data is thus

given approximately by the sum of the red-noise spectrum (3.18) and the spectrum (3.15) of the

residual white noise after idealized low-pass filtering with a half-power filter cutoff wavelength of

15 km. This total measurement error spectrum is shown by the solid red line in Figure 7.

The preceding analysis neglects the effects of imperfections of the filter transfer function of

any realizable low-pass filter applied in ground-based post-processing of the 1 km × 1 km on-

board pre-processed SWOT estimates of SSH. Post-launch verification of the SWOT instrument

performance as specified by (3.15) for 2-dimensionally filtered SWOT data would therefore be

subject to imperfections of the filter transfer function. For example, the dashed green line in Fig-

ure 7 shows the 1-sided, 1-dimensional power spectral density of residual white noise errors after

smoothing 2-dimensionally using a Parzen smoother with a half-power filter cutoff wavelength of

λc = k−1
c = l−1

c = 15 km. The solid green line is the sum of this realizable low-pass filtered

white noise spectrum and the red-noise spectrum (3.18). It is evident that the flattening of the

residual noise spectrum to the value specified by (3.15a) would not be detectable when the onboard

pre-processed SWOT data are smoothed with a realizable filter. The uncorrelated measurement

errors in the SWOT estimates of SSH are thus untestable in the form (3.15) specified in the SWOT

documentation based on a hypothetical idealized low-pass filter.

In practice, the complications of the imperfections of the filter transfer function need not be

addressed in post-launch verification. From (3.8b), the along-track white noise spectrum for the

uncorrelated errors in the unfiltered onboard pre-processed SWOT estimates of SSH with variance

(3.17) derived above from the untestable specification (3.15) is

Σ ′1d(k) = 2∆xσ2
ε = 14.96 cm2/cpkm, for 0 < k ≤ kN , (3.19)

where kN = 1/2 cpkm is the Nyquist wavenumber (3.3a) for the planned sample interval ∆x = 1 km

of the onboard SWOT data. The uncorrelated error spectrum (3.19) is shown by the dashed blue

line in Figure 7.

While the uncorrelated errors are attenuated at all wavelengths by 2-dimensional smoothing

in accord with (3.14c), this is not the case for the long-wavelength measurement errors. The latter

are highly correlated in the cross-track direction over the 70-km widths of the two measurement

swaths. Except at the short wavelengths over which the total measurement errors are dominated
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by the contribution from uncorrelated errors, the long-wavelength errors thus cannot be be reduced

appreciably by cross-track smoothing. The spectrum of long-wavelength measurement errors shown

by the dotted red line in Figure 7 is therefore approximately the same with and without smoothing.

The spectrum of total errors in the onboard pre-processed SWOT data without smoothing can thus

be approximated by the sum of the dashed blue line and the dotted red line, which is shown as the

solid blue line in Figure 7.

In contrast to the solid red line that is based on a hypothetical idealized low-pass filter, the

along-track spectral specification of total errors in the onboard pre-processed SWOT estimates of

SSH without ground-based filtering (the solid blue line) can be tested in post-launch verification.

3e. Noise Reduction in User-Defined Smoothing of SWOT Data

The analysis in Section 3d establishes the requirement (3.17) for the variance σ2
ε ≈ 7.5 cm2

of uncorrelated errors in the onboard pre-processed estimates of SSH. Most users interested in

oceanographic applications of SWOT data are likely to want to smooth the onboard pre-processed

estimates of SSH to reduce the RMS noise of 2.74 cm. But they may prefer to smooth with a filter

cutoff wavelength that differs from the value of λc = k−1
c = l−1

c = 15 km that forms the basis for the

measurement noise requirement as summarized in Section 3d. Moreover, users may choose to use

some filter other than the Parzen smoother that has been used in this note to illustrate the effects

of filtering. Furthermore, they may wish to filter the SWOT data differently in each dimension,

e.g., with less smoothing in the cross-shore direction than in the alongshore direction in coastal

regions. As long as the half-power filter cutoff wavenumbers kc and lc of a user-defined smoother

are understood, the formalism in Sections 2d, 2e and 3d quantifies the feature diameter resolution

and residual error variance after smoothing of the onboard pre-processed estimates of SSH.

For example, the analysis in Section 2e shows that 2-dimensional smoothing with a half-power

filter cutoff wavelength of λc = k−1
c = l−1

c in both dimensions reduces the noise by the multiplicative

factor (2.31). For the planned SWOT sample spacing of ∆x = ∆y = 1 km, smoothing with

λc = 10 km (which could be achieved with a 2-dimensional Parzen window with spans of L4 = 9 km

in each dimension) is thus equivalent to averaging over approximately 52 = 25 of the uncorrelated

1 km × 1 km onboard pre-processed estimates of SSH. The uncorrelated error variance (3.17) that

is derived in Section 3d is then reduced by a multiplicative factor of approximately 1/25, resulting

in a residual uncorrelated error variance of σ2
ε = 0.299 cm2 and hence a residual RMS noise of

0.547 cm in the post-processed estimates of SSH with 10 km wavelength resolution. From (2.14c),

this smoothing is equivalent to a feature diameter resolution scale of approximately 5 km.

4. Summary

This note presents a detailed mathematical analysis of the resolution and noise variance in the

onboard pre-processed SWOT estimates of SSH. The Parzen smoother that is defined and examined

in detail in Section 2b has been used throughout the analysis as a basis for assessing the resolution

and residual noise of filtered SWOT data. The motivation for using the Parzen filter is that it

is simple to implement and has good filtering properties in terms of filter side lobe suppression.

Moreover, it is the filter that will be applied in the cross-track direction in the onboard processor
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of the SWOT instrument. The conclusions in Sections 2 and 3 would be essentially the same

for any other filtering procedure with parameters chosen to give the same half-power filter cutoff

wavenumbers kc and lc in the x and y dimensions.

The analysis in Section 2c provides a metric for characterizing the feature diameter resolution

of the onboard pre-processed SWOT estimates of SSH based on the spatial autocorrelation function

of white noise after onboard smoothing of the raw SWOT data. For the planned smoothing in the

onboard processor with a filter cutoff wavelength of λc ≈ 2 km in each dimension, the feature

diameter resolution (2.14c) is approximately 1 km. The resulting onboard pre-processed SWOT

estimates of SSH on a 1 km × 1 km grid with this smoothing are shown in Section 2c to be

uncorrelated.

Most oceanographic applications of SWOT data will require additional smoothing in ground-

based post-processing to reduce the noise in the onboard pre-processed SWOT estimates of SSH.

The analysis in Section 2c is extended in Section 2d to characterize the feature diameter resolution

for arbitrary smoothing in post-processing of the 1 km × 1 km SWOT data with arbitrary user-

specified filter cutoff wavenumbers kc and lc in the x and y dimensions.

In order to assess the reduction of uncorrelated measurement errors that is achieved from

user-defined smoothing of the 1 km × 1 km SWOT data, it is necessary to determine the error

variance reduction factor that is associated with a given half-power filter cutoff wavenumber of the

smoother. This is addressed in Section 2e by comparing the error reduction after filtering using

the Parzen smoother with the error reduction in block averages (equivalent to a uniform-weighted

running average) with the same filter cutoff wavenumber.

In practice, the uniform-weighted running average is inferior to all other smoothers because

of its serious side-lobe contamination (see Section 2a). The Parzen smoother is a good choice

for ground-based post-processing. Many other filters offer equally good, and some even better,

filtering properties. Regardless of what filter is used, smoothing with arbitrary half-power filter

cutoff wavenumbers of kc and lc in the two dimensions reduces the uncorrelated error variance

of the onboard pre-processed SWOT estimates of SSH by approximately the multiplicative factor

(2.30b).

Application of the error variance reduction factor (2.30b) to estimate the residual error variance

σ2
ε after smoothing of the 1 km × 1 km SWOT data requires knowledge of the error variance

σ2
ε of the unsmoothed onboard pre-processed SWOT estimates of SSH. This information is not

explicit in the present drafts of the SWOT documentation1,2,3. Instead, the science requirement

for uncorrelated measurement errors is specified in the form (3.15) of an along-track 1-dimensional

power spectral density after hypothetical 2-dimensional smoothing of the onboard pre-processed

SWOT data with an idealized filter. The lengthy mathematical analysis in Sections 3a–c derives

the relation (3.14c) between this idealized spectral specification and the uncorrelated error variance

σ2
ε . This relation allows the “reverse engineering” in Section 3d that establishes the requirement

(3.17) for the uncorrelated error variance of the onboard pre-processed SWOT estimates of SSH in

order to achieve the spectral form (3.15) of the science requirement specification for SWOT. The

theoretical basis for (3.17) and the RMS uncorrelated error of 2.74 cm that this equation implies

are perhaps the most important contributions of the analysis presented here since this information

is not provided in any of the SWOT documentation1,2,3.
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When used in concert with the multiplicative error reduction factor (2.30b) in terms of the

half-power filter cutoff wavenumbers kc and lc in the two dimensions, the uncorrelated error variance

requirement (3.17) for the onboard pre-processed SWOT estimates of SSH allows users to determine

the reduction of uncorrelated errors that can be achieved from smoothing in ground-based post-

processing. Regardless of the specific smoother that is used, the residual uncorrelated error variance

after smoothing is given approximately by

σ2
ε ≈ 4 ∆x∆y kc lc σ

2
ε ≈ 30 ∆x∆y kc lc cm2 , (4.1)

where ∆x and ∆y are the sample intervals of the onboard pre-processed SWOT estimates of SSH

in the two dimensions. Present plans are for a uniform grid spacing of ∆x = ∆y = 1 km.

The expression (4.1) for the residual uncorrelated error variance assumes that the accuracy

requirement (3.17) for the onboard pre-processed SWOT data is achieved. If the uncorrelated error

variance σ2
ε of the unfiltered onboard pre-processed SWOT data is higher or lower than the 7.5 cm2

requirement (3.17), the numerator on the right side of (4.1) will have to be adjusted accordingly.
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Figure 1.  The 1-sided, 1-dimensional power spectral density of the science requirements for 
measurement errors of SWOT data before and after (blue and red lines, respectively) smoothing 
2-dimensionally to eliminate variability with wavelengths shorter than a filter cutoff wavelength 
of λc=15 km. The dotted red line corresponds to the requirement for red noise from orbit errors 
and long-wavelength measurement errors. The dashed red line corresponds to the requirement 
for residual uncorrelated errors after smoothing with an idealized filter that has a magnitude of 1 
for wavelengths longer than λc and 0 for shorter wavelengths. The solid red line is the sum of the 
power spectral densities of the red noise and the idealized low-pass filtered uncorrelated errors. 
The dashed blue line corresponds to the uncorrelated errors in onboard pre-processed SWOT data 
with no smoothing that is derived in Section 3d. The solid blue line is the sum of the power spectral 
densities of the red noise and the white noise in the onboard pre-processed SWOT data. For com-
parison, the mean and 68 percentile SSH signal power spectral densities from the SWOT Science 
Requirements Document are shown as black and cyan lines, respectively.
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Mean
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Figure 2. The weighting function (top) and squared filter transfer function (bottom) for a uni-
form-weighted running average with a span of L1=1 km. The corresponding half-power filter cutoff 
wavenumber is kc= λc

-1 = 0.443 cpkm, shown by the vertical dashed line in the bottom panel.



Figure 3. The weighting function (top) and squared filter transfer function (bottom) for a Parzen 
smoother with a span of L4=1 km. The corresponding half-power filter cutoff wavenumber is kc= 
λc

-1 = 0.910 cpkm, shown by the vertical dashed line in the bottom panel.



Figure 4. The weighting function (top) and squared filter transfer function (middle) for the cases of 
a uniform-weighted running average with a span of L1=1 km (blue lines, same as in Figure 2) and 
a Parzen smoother with a span of L4=2 km (green lines). The bottom panel shows the associated 
lagged autocorrelation functions (see Section 2c).



Figure 5. The same as Figure 4, except for the cases of a uniform-weighted running average with 
a span of L1=7 km (blue lines) and a Parzen smoother with a span of L4=14 km (green lines). 
The half-power filter cutoff wavenumbers for both of these smoothers are approximately kc=1/15 
cpkm, shown by the vertical dashed line in the middle panel.



Figure 6.  The ratio R = σ4
2/σ1

2 of the residual variance σ4
2 after filtering uncorrelated white noise 

using a Parzen smoother with a span of L4 = 4L and the residual variance σ1
2 after filtering with a 

uniform-weighted running average with the same span of L1 = L. The dots correspond to the ana-
lytical approximation equation (2.28) and the solid line is the exact solution obtained by numerical 
integration of equation (2.25).



Figure 7.  The 1-sided, 1-dimensional power spectral density of the science requirements for mea-
surement noise of SWOT data before and after smoothing 2-dimensionally to attenuate variability 
with wavelengths shorter than a filter cutoff wavelength of λc=15 km. The dotted red line is the 
requirement for red noise from orbit errors and long-wavelength measurement errors. The dashed 
red line is the requirement for residual uncorrelated errors after smoothing with an idealized filter 
that has a magnitude of 1 for wavelengths longer than λc and 0 for shorter wavelengths. The solid 
red line is the sum of the power spectral densities of the red noise and the idealized low-pass fil-
tered uncorrelated errors. The dashed and solid green lines are the analogous spectra for SWOT 
data filtered with a (realizable) Parzen smoother with a filter cutoff wavelength of λc. The blue 
dashed and solid lines are the analogous spectra for the onboard pre-processed SWOT estimates of 
SSH with no smoothing that is derived in Section 3d.


