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 PIES -
— What are they?
— How do we use them to get SSH?

* PIES _SSH uncertainty —
— Where does it come from?
— What measurements will reduce uncertainty?



Kuroshio Extension System Study (KESS, 6/2004- 6/2006)
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PIES

(Pressure-recording Inverted Echo Sounder)
4 e Emits 12 kHz sound pulses

e Measures T = round-trip travel
time from bottom to surface

e Measures bottom pressure
(P,ot) — resolution <1 mm

e A robust empirical relationship
exists between t and vertical
profiles T(P), S(P), 6(P)

=» geopotential O



SSH COMPRISES STERIC AND MASS-LOAD PARTS

Sea Surface Height (n) after IB compensation:
(n"—=1B) = ®/g + P/pg

Where (®) =anomaly from mean
® = Geopotential Height
(O re near-bottom nominal isobar, like 4000 or 5000 dbar)

g = Gravity
P = Bottom Pressure
p = Density
Typical sizes...
(D'/g P’/pg n' Gr} (std dev)
(m) (m) (m) (m)
Kuroshio Jet 1.3 0.5 1.7 0.2
Quiet Intervals 0.3 0.2 0.4 0.1
Meanders, Rings 1.0 0.3 1.2 0.15

Steric and mass-load parts have similar amplitudes but different processes
and different spectra and different lateral scales



Mono-SLA and PIES-derived SSHA

Nl P S T AD!

-1} C=0.95,R=0.96

1} £=0.98,R=0.87

PIES data were interpolated to
G g SO | O I W S g e N times when Jason-1 passed
1 53 overhead.
ol g s ane] —— PIES-derived SSHA
| ecoss meosr |7 Mono-SLA Excellent agreement when both
200 400 600 800 steric and mass-loading parts are
Park et al., J.Oceanogr. 2012 included.




Mono-SLA and PIES-derived SSHA
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Niot = O/g + P/pg

meters

= r]bc + r]ref
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KESS northern, middle &
southern sites

meters

-steric part (bc) large

-mass-loading (ref) is important.

meters




Rms EITOFS (along-track 26 sites)  Based on Kuroshio

< Observed rms differences Z?S Agu”]:as
Mono-SLA 6.8 cm etter for
SWOT

<+ Predicted rms difference

(4.6t05.1)2 + (3.8 10 8.7)2 + 1.42

when error caused by geographical position
mismatch between Jason-1 and PIES
= 1.4 cm (1 km offset)

Error Budget for AVISO : 4.6-5.1 cm
GDR Corrected SSH 3.3cm

Post-processing - 1B 2.5-3.0cm From
- Tides 2.0-2.5cm Baker-Yeboah (2008)

Error Budget for PIES : 3.8-8.7 cm

Sea state scatter 0.2cm

Sea state bias 0.1 cm

Tides 0.1 cm

Pressure drift 1.0 cm

03/07/08 Mooring motion 0.2 cm

Spline-curve Lookup  3.7-8.6 cm



Rms EITOFS (along-track 26 sites)  Based on Kuroshio

< Observed rms differences z“; Ag“'TS
Mono-SLA 6.8 cm etter for
SWOT

Predicted rms difference
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when error caused by geographical position
mismatch between Jason-1 and PIES
= 1.4 cm (1 km offset)

Error Budget for AVISO : 4- cm
GDR Corrected SSH 3.3&\’

Post-processing - 1B 2.5-3.0cm From
- Tides 2.0-2.5cm Baker-Yeboah (2008)

Error Budget for PIES %—%

Sea state scatter
Sea state bias

O 1 cm
Tides 0.1 cm
Pressure drift
03/07/08 Mooring motion

Spline-curve Lookup



In order to improve the accuracy of independent SLA measurements, and
to measure SLA on small 5-30 km lateral scales, where do we need more
S,T,P measurements?

The main error contribution to SLA, ¢ is from scatter in @( t) lookup.

Examine next...

Estimate ®,” contributions from 2"d BC mode in full water column
Bottom-intensified processes (TRW’s, DWBC)

Near-surface SQG processes and streamers (mixed layer to 150 m?)
mid-column filaments (main pycnocline, 200 m — 700 m)
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For guidance about what causes scatter in O( t) examine temperature
profiles, grouped in narrow bins of T (1 ms).

These show subsurface intrusions (likely filaments) and surface warming
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8 tau vs phi, curve=1st BC mode; dots= other displacements
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Combine CPIES with moorings, having many S, T, P recorders vertically, to
determine S’, T anomalies relative to the GEM profile, will give the most
accurate @ measurement.

Laterally space some CPIES closely (~5km).

Additional CPIES can be added to observe longer lateral scales.

Final points...
While the focus of this presentation is on understanding and reducing noise
in full water column geopotential height @’ estimated from PIES T,

1) remember also that bottom current meters are important for leveling and
dedrifting the bottom P’ measurements.

2) Wire-flyer = new fine lateral AND vertical scale capability combined



FastCat CTD 16 Hz,

WIRE FLYER developed at URI by

Chris Roman, Dave Hebert,
and Dave Ullman

< Ship speed 3-4 knots

800m

W |
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Real time display/contV —
ical res. 0.125m; — .
vertiea’ res " Acoustic comms  Clump weight

horiz res. ~ 500m;
transects ~ 178km

Shipboard surveys: in situ calibration CTD profiles for cPIES; with LADCP/ SADCP;

estimate shear-to-strain ratios;
unprecedented horizontal and vertical structure of streamers and filaments



END -- QUESTIONS?
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PIES intro; tand P,T

— (SSH'-I1B" ) = @’/g +P’/(gp)

— Ttintegral & geopotential ® integral; plot ® vs t with scatter; signal/noise ratio

— Published examples of PIES measuring SSH, compared to altimeter SSH; uncertainties
GOAL implied for SWOT calval:

— Understand the measurement accuracy of SSH from SWOT, particularly on lateral scales
from 5 km — 100 km

— Compare against local independent trusted measurements of SSH

Detail PIES_SSH uncertainty; where do we need more STP measurements?
— T(P) and S(P) profiles and wiggles affecting ' and @’ differently
— Surface/ bottom / mid-column anomalies
— Higher dynamical modes (2nd mode — implications near DWBC?
— Measurement error — P drift; CPIES geostrophic leveling (deploy 6+ mos in advance?)

Implied/ deduced lateral scales of features



SFZ

rms difference [m]

Drake Passage (cDrake experiment)
AVISO MSLA predicted mapping and CPIES errors agree well
with observed rms differences.
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<20 d variance that was
unresolved by the Jason 10 d
sampling.
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PIES

(Pressure-recording Inverted Echo Sounder)

t=\int(1/c)dz

O =\int(1/p)dp

Emits 12 kHz sound pulses

Measures T = round-trip travel
time from bottom to surface

Measures bottom pressure
(P,ot) — resolution <1 mm

A robust empirical relationship
exists between t and vertical
profiles T(P), S(P), 6(P)

=» geopotential O
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Mono-SLA and PIES-derived SSHA
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