

ational Aeronautics and pace Administration

 Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Topography (SWOT) Mission Surface Water and Ocean

 Science Team Meeting

Sep 19-22, 2023

 Features of KaRIn Data that Users Should be Aware of

Curtis Chen⁽¹⁾

 on behalf of JPL/CNES Algorithm and Cal/Val Team (1)Jet Propulsion Laboratory, California Institute of Technology

 - © 2023 California Institute of Technology. Government sponsorship acknowledged. 1 **© 2023 California Institute of Technology. Government sponsorship acknowledged. CL#23 5180**

Introduction

- KaRIn measurement is complicated!
	- – Data products attempt to abstract complexities of measurement from users as much as possible, but many items that may not be immediately intuitive remain
	- – Knowledge of measurement details can be especially important in trying to interpret pre-validated data products
- • This talk addresses practical aspects of interpreting KaRIn data products
	- Answers to frequently asked questions
	- Tips to hopefully avoid misinterpretation and confusion
- General topics:

- Definitions, conventions, and data representation
- Data availability
- Phenomenology to be aware of

Look at the Quality Flags!

• **Users should pay attention to quality flags in KaRIn products**

– Measurement values are associated with quality flags

- Quality flag variables are usually called {measurement_variable}_qual
	- • Example: If measurement variable is named height then associated quality flag is usually named height_qual
	- • Quality flag variable name for given measurement variable is indicated by metadata in product
		- NetCDF: See the *quality_flag* variable attribute
		- Shapefile: See the *quality_flag* field in the shp.xml file
- • Quality flag indicates whether measurement is "good," "suspect," "degraded", or "bad":
	- "Good": Processing did not find any reason to disbelieve measurement
	- – "Suspect": Something about measurement was not quite as expected, so measurement may be worse than normal, but may also be fine
	- – "Degraded": Something about the measurement was definitely wrong, so measurement is likely worse than normal (though not necessarily by a lot)
	- "Bad": Measurement is likely nonsensical (e.g., null filled)

Quality Flags and Averaging

- • Quality flags affect how averaging is done during ground processing
	- – Good and suspect data samples are always used when averaging
		- If only good samples are used, then averaged output is marked good
		- If suspect samples are used, then averaged output *may* be marked suspect
	- – Degraded data samples are used when averaging only if there are too few good and suspect samples
		- If degraded data samples are used, then averaged output is flagged as degraded
	- Bad data samples are never used when averaging

Quality Bit Flag Interpretation

- • Many quality flags in different KaRIn products are defined as bit flags
	- Bit flag is unsigned integer whose individual bits indicate different off-nominal conditions
	- Allows single variable to contain multiple levels of information
- • Simplest interpretation: See if flag is 0 or nonzero
	- If flag = 0, then measurement is "good" (0 always means "good" for KaRIn quality flags)
	- $-$ If flag $\neq 0$, then measurement is not "good"
- • Straightforward interpretation: Interpret flag as numeric value and compare to Threshold1 and Threshold2 defined in metadata of flag variable (and PDD):
	- If flag = 0, then measurement is "good" (0 always means "good" for KaRIn quality flags)
	- If flag \neq 0, then

- If $0 <$ flag \leq Threshold1, then measurement is "suspect"
- If threshold1 < flag \leq Threshold2, then measurement is "degraded"
- If flag > threshold2, then measurement is "bad"
- More sophisticated interpretation:
	- If flag = 0, then measurement is "good" (0 always means "good" for KaRIn quality flags)
	- $-$ If flag $\neq 0$, then decompose nonzero flag value into individual nonzero bits to determine what exactly was not good about measurement (see example on next slide) and interpret measurement accordingly
		- Top-level bit definitions are in metadata of flag variable
		- Additional details on bit definitions are in PDDs

Quality Bit Flag Example

SWOT

Ξ α n

Final Note About Quality Flags

- • Flagging algorithms are complicated and still evolving
	- New flag bits may be defined

- Internal thresholds for when to set different flag bits will likely be adjusted
- – Possible that flags may be removed or repurposed
	- Especially if those bits are never raised
- – Threshold1 and Threshold2 for determining suspect vs. degraded vs. bad may change in future product versions
	- But flag interpretation will always remain consistent for a given version
- Flags themselves may have bugs
	- – Some known bugs in flags are in "beta pre-validated" products
		- That's why the products are "beta pre-validated"
	- Project still recommends that users look at flags first

Uncertainty Estimates

- Many measurement variables are accompanied by uncertainty estimates
	- Uncertainty variables are usually called {measurement_variable}_uncert
		- • Example: If measurement variable is named height then associated uncertainty estimate is usually named height uncert
	- Uncertainty estimates are typically 1-sigma (68th percentile) values
	- Uncertainty estimates often reflect only random error, not systematic error
	- See PDDs and ATBDs for details
- • Uncertainty estimates for KaRIn height estimates are usually based on interferometric coherence
- **Validation of uncertainty estimates has been lower priority than validation of measurement variables themselves**
	- Use with caution

SWOT

 – Do not be surprised if observed systematic errors exceed uncertainty estimates significantly

L2_LR_SSH "_2" Variables

 • L2_LR_SSH product has two versions of SSH and SSHA with different wet troposphere and sea state bias (SSB) corrections:

SWO

- Solution 1 relies more on observations for corrections (may be slightly more accurate)
- Solution 2 relies more on models for corrections (fewer gaps due to missing corrections)

 **Nadir altimeter SWH is smoothed before SSB computation*

• **Input info for SSB correction solutions may continue to change in future product releases**

Application of Crossover Calibration Correction

- • Correction from crossover calibration (also called XOverCal or "xover") is reported in L2_LR_SSH product but *is not* applied to SSH or SSHA
	- – To get corrected SSH, user must compute following himself/herself:
		- ssh karin corrected = ssh karin + height cor xover

SWOT

- ssha_karin_corrected = ssha_karin + height_cor_xover
- ssh_karin_2_corrected = ssh_karin_2 + height_cor_xover
- ssha_karin_2_corrected = ssha_karin_2 + height_cor_xover
- – Crossover correction has its own quality flag in L2_LR_SSH
	- • Example: If considering ssha_karin_2_corrected above, should examine both ssha karin 2 qual and height cor xover qual
- • Crossover correction *is* applied to height in L2_HR_PIXC and thus also to water surface elevation (WSE) in RiverSP/Avg, LakeSP/Avg, and Raster products.
	- – Crossover quality is indicated by bits in relevant height or WSE quality flags in HR products
	- – If crossover correction quality flag indicates bad correction, then PIXC result is flagged as "degraded" and uncorrected height is reported

 KaRIn SSHA directly from L2_LR_SSH product shows +/-3 m tilt in cross track without XOverCal correction

Left, Right, H, V, Plus Y, and Minus Y

 • SWOT spacecraft undergoes 180˚ yaw flips every \sim 2.5 months

- – Spacecraft thermal design has preferred side to be in sun
- Beta (β) angle between orbit plane and sun drifts
- – Yaw flips occur when beta angle goes through zero
- • "Left" and "right" swath sides are defined relative to measurement on ground relative to nadir track and do not depend on yaw state
	- – End measurement given in terms of left and right sides in data products
- H (horizontal) and V (vertical) polarizations and *+y* and *–y* directions in KaRIn frame do depend on yaw state
	- – Many L1B product variables and calibration parameters related to physical measurement are given in terms of H, V, +y and -y

Cycle and Pass Numbering

Calibration ("1 day" or "fast sampling") orbit: • Calibration ("21 day" or "science") orbit: •

- Cycle numbers increase sequentially from 401 to 578 Cycle numbers increase sequentially from 001
- Cycle 401 began 2023-01-15 09:26:13.011 UTC
- Transition to nominal orbit began 2023-07-11 ~03:00 UTC Repeat period is 20.86455 days (not exactly 21 days)
- Repeat period is 0.99349 days (not exactly 1 day) – Repeat period is 0.99349 days (not exactly 1 day) • Overpass times of day will drift ~3 hrs earlier per repeat cycle
	- Overpass times of day will drift ~9 min earlier per repeat cycle Nominal orbit has 292 revolutions or 2*292 passes
- $-$ Calibration orbit has 14 revolutions or 2*14 passes numbered from $-$ numbered from 001 to 584 001 to 028
	- • Both calibration and nominal orbit phases:
		- Ascending passes have odd numbers (001, 003, 005, …)
		- Descending passes have even numbers (002, 004, 006, …)
		- $-$ Pass duration is \sim 51 min
		- KaRIn data from drifting orbit phases is not processed
- Nominal ("21 day" or "science") orbit:
	-
- – Cycle 401 began 2023-01-15 09:26:13.011 UTC Cycle 001 began 2023-07-21 05:33:45.768 UTC
	- Repeat period is 20.86455 days (not exactly 21 days)
		-
	- Nominal orbit has 292 revolutions or 2*292 passes

Height References

- • SSH and PIXC height are referenced to ellipsoid
	- Ellipsoid parameters are given in metadata of every single KaRIn product granule
	- As of Sept 2023: WGS84

```
:ellipsoid_semi_major_axis = 6378137. ; 
:ellipsoid_flattening = 0.00335281066474748 ;
```
- • River, lake, and raster water surface elevation (WSE) are referenced to geoid
	- Geoid heights relative to ellipsoid are reported in L2 products at each sample location
	- As of Sept 2023: EGM2008
- • SSHA is referenced to mean sea surface (MSS)
	- MSS heights relative to ellipsoid are reported in L2 LR products at each sample location
	- – Two MSS models (CNES/CLS and DTU) reported in product, but only one used to compute SSHA from SSH
	- – As of Sept 2023, SSHA assumes
		- CNES/CLS 2015 MSS for beta-pre-validated
		- CNES/CLS 2022 MSS for pre-validated

Truth Definitions

- • Truth definitions for SWOT validation may not always agree with specific definitions of quantities used by individual users for particular purposes
	- Definitions are matter of convention for SWOT

- Consistency in interpretation is most important
- **Users should be aware of differences in truth definitions and measurement conventions, especially when attempting to "validate" SWOT**
- • Example: For validating river products, true or ideal reach slope is defined: *reach_slope = (WSE_at_reach_start – WSE_at_reach_end) / reach_length*
	- – Reach length is static and comes from prior river database (SWORD), not from SWOT observation
	- – Estimate of reach slope uses measurement data from entire reach to estimate WSE at each end of reach
	- Definition is equivalent to unweighted average of slope over entire reach

Relevant Time Scales of Variations

- • Users should be aware of time scales of variations that may affect KaRIn data quality
	- – Seconds to minutes: KaRIn parameter changes
		- • Parameter changes should be compensated by KaRIn internal calibration and processing
	- ~100 min: KaRIn orbit

- • Variations over orbit should be compensated by crossover calibration
- – ~80 days: Beta (half) cycle between yaw flips
	- • Changes in KaRIn and spacecraft thermal characteristics may give uncompensated errors

Spacecraft Events and Data Availability

- Spacecraft events impact availability of KaRIn data
	- Eclipse entry/exit: SWOT spacecraft goes in and out of Earth shadow and experiences thermal transients that can affect KaRIn stability
		- Occurs twice per orbit in similar geographic locations
		- Affects ~2 min of data (~800 km along track) after event
	- Propulsive maneuvers (station keeping, collision avoidance): SWOT needs to fire thrusters to make minor changes to orbit; involves large attitude variations
		- Occurs every several weeks
		- Affects few hours of data after event
	- Yaw flip: 180 rotation in yaw
		- Occurs every \sim 2.5 months
		- Affects few hours of data after event
	- Solar array rotations: SWOT solar arrays are re- oriented to collect sunlight with changing beta angle
		- Occurs several times every ~2.5 months
		- Affects ~12 min of data after event
- Other data loss:

SWOT

– Various issues with storing or downlinking data

 instead of "bad" (null release, but events may Much of data affected by spacecraft events will be pacecraft events will be pate **filled) in pre-validated still affect data quality**

Eclipse example from 2023-04-15 LR coverage

Defaulted Fields When Measurement is Bad

- • Typical approach for averaging during ground processing:
	- L2 data products involve averaging many upstream data samples
	- – Upstream data samples that are flagged as "bad" are discarded before averaging to compute downstream outputs
	- Time tags reported in L2 outputs are usually times of observation
	- – Model corrections are computed at observed geolocation (measured 3-D position)
- • If all upstream samples were flagged as "bad", there are no observations to average for given L2 output sample
	- L2 output sample is flagged as bad

- – Other associated quantities may also be null filled
	- Observation time is null filled if there is no observation
	- Model corrections at geolocation are null filled if measured geolocation does not exist

No Data vs. No Detection in HR Data

• Most land pixels are discarded from L2 HR products

- – Classification of land vs. water is done by water detection algorithm in L2 HR PIXC processing
- • If L2 HR granule does not contain any water pixels, user may want to know which case happened:
	- – SWOT data were collected, but water was not detected (area was observed to by dry)
	- SWOT data were not collected (area was not observed and could be wet or dry)
- L2_HR_PIXC product contains variable pixc_line_qual to indicate whether data were collected
- • No equivalent for LR data because water detection does not happen in LR processing

Filled River/Lake Objects and Sparse Rasters

 • RiverSP product and PLD-oriented (Prior) file of LakeSP product contain one entry per database reach/node/lake that *might* be covered by granule

- – Set of reach or lake objects included in given SP continent-pass granule does not vary with cycle number
- – May includes objects up to 80 km from nadir, not just objects from 10-60 km cross track
	- • Intent is to be able to report any useful observations rather than have product definition exclude good data
- – Objects are null filled if water is not detected
	- **Objects outside 10-60 km but within 0-80 km cross track may always be null filled**
- • Raster product is null filled where water is not detected
	- coverage to distinguish no-water vs. no-– Flags indicate approximate observation observation cases

LR Data Over Inland Water and HR Data Over Ocean

SWOT

- • KaRIn LR and HR data streams are split on board spacecraft in instrument firmware processing
	- – Nine-beam LR interferograms are formed on board and spatially averaged before being downlinked
	- – HR pulse data are pre-summed (low-pass filtered in along-track) on board before being downlinked
- • Ground algorithms and data products are designed around using LR data over ocean and HR data over land, not vice versa
	- LR data for hydrology and HR data for oceanography *may* still be useful
	- – But prospective users should gain familiarity with data products and algorithms to determine whether LR data for land and HR data for ocean meet their needs/desires

Users should *not* **assume that LR and HR data differ only in horizontal resolution and height accuracy**

LR Data Over Inland Water

- • KaRIn on-board processor (OBP) uses flat reference surface per swath side
	- Design of on-board reference surface was based on hydro input
	- May still give increased error where there are rapid spatial variations in elevation
- • Phase-bias correction in ground processing is sensitive to spatial variations in backscatter and topography at 1–10 km length scales
- • LR ground processing does not include many steps that are done in HR processing:
	- Classification (water detection and dark water flagging)
	- Phase unwrapping with respect to HR reference DEM
	- River and lake vector processing

SWOT

- • Crossover-calibration corrections are not applied to LR products, so LR products will contain spatially varying cross-track tilts
	- But crossover-calibration correction terms are reported in product so users can apply themselves
- LR quality flags are designed for ocean and may not be trustworthy
- Validation of LR data over land has not been high priority to date

LR data products are *not* **simply less-noisy, coarser-resolution versions of HR products**

HR Data Over Ocean

• Pre-summing in OBP implies loss of information in downlink

SWOT

- • HR ground processing does not do very much spatial averaging
	- – HR data may be sensitive to wave-bunching effects observed on AirSWOT unless specialized post-processing is applied
- HR data products do not include ocean tide or sea-state bias (SSB) corrections
- Prior-based river and lake outputs may exist but be empty over ocean where there are no database features
- HR quality flags are designed for inland water and may not be trustworthy
- Validation of HR data over ocean has not been high priority to date
- • Note: Cal/Val team uses HR data over ocean, but only for specific calibration purposes and only after customized offline processing (not available generally)

HR data products are *not* **simply noisier, finer-resolution versions of LR products**

Height Distortion From Wave Bunching

Azimuth shift is proportional to line-of-sight target velocity, which is mainly due to wave vertical velocity for near-nadir viewing

SWOT

would be biased low.

Wave bunching is non-linear distortion, so present in the true wave field Azimuth shift is proportional to line-of-sight
target velocity, which is mainly due to wave
vertical velocity for near-nadir viewing
geometry
geometry
geometry
present in the true wave field

Dark Water

 • Backscatter of water may be dark for different reasons:

– Rain

SWOT

- significant issue for – Highly specular reflections (more inland water)
- • Effects of low backscatter:
	- Greater random noise
	- from contamination of – Greater sensitivity to systematic errors nearby targets
	- – Dark water not water in HR data but may be flagged as dark water based on directly detected as prior (not SWOT) data **North**

 $\overline{1}$

Willamette River Bright Fields Example

- Agricultural fields near Willamette River Cal/Val site are bright and are incorrectly detected as water, especially in winter/early spring data
	- Overdetection of water affects pixel mapping to river and therefore corrupts river height, slope, and area estimates
	- Fields in other areas are not as bright

SWOT

•

- Willamette fields became less bright going into summer
- Overall impact to river height, slope, and area estimates needs further assessment after additional calibration work, comparison to field data, and algorithm tuning

Contrast-adjusted SLC image

Ground truth transect over PIXC water detection map

Bright Nadir Returns

Specular echoes from nadir are sometimes so bright that range sidelobes of pointtarget response corrupt other parts of images

SWOT

- Algorithms have been updated to flag and ignore corrupted pixels
	- But not in beta-pre-validated release

Connecticut River example with bright nadir echoes (and dark water on river)

Waimakariri River Example

Detection of real water works quite well over Waimak

SWOT

• Dark water flagging does not work well because rapid migration of river channels causes smearing in prior water probability map

Ice

- Ice can appear bright and be detected as water, but resulting height measurements may not be reliable
- KaRIn data may have potential for cryosphere science, but validation of performance is not primary priority for current project work
- Ice flags exist in both LR and HR data products

SWOT

Ob River, 406_010_040L Note: Data is from before antenna alignment and processing is not calibrated

Phase Unwrapping Errors

Image shows HR pixel geolocations projected onto ground and overlaid on optical layer for illustration; colors represent pixel classification values

SWOT

Phase unwrapping errors can cause large cross-track shifts, large height errors, and noticeable crosstrack slope errors in HR data

Rhone River, reach 21602600391, 523_003_235L

Phase Unwrapping

- Interferometric phase is precise measure of difference in range between point on ground and two radar antennas separated by known baseline
- Phase can only be determined modulo 2π radians

- Multiple points in space have same range and interferometric phase; target location is ambiguous
- Target location is geolocated incorrectly if incorrect phase ambiguity is assumed

Conclusions

• KaRIn measurement is complicated

- Users seeking to validate SWOT measurements may benefit from seeking to understand measurement and conventions
	- If measurement process is viewed as black box, validation feedback may not be very helpful to project
	- Specific definitions and conventions can have significant implications on validation results
- Many sources of additional details are available:
	- Metadata of product files
	- Product description documents (PDDs) and algorithm theoretical basis documents (ATBDs)
		- https://podaac.jpl.nasa.gov/swot?tab=datasets

Backup

Top-Level Algorithm Flow

SWOT

Radiometer, POE/MOE, KaRIn Calibration Flow

LR Algorithm Flow

HR Algorithm Flow

