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s u m m a r y

This paper focuses on estimating river bathymetry for retrieving river discharge from the upcoming Sur-
face Water and Ocean Topography (SWOT) satellite mission using a data assimilation algorithm coupled
with a hydrodynamic model. The SWOT observations will include water surface elevation (WSE), its spa-
tial and temporal derivatives, and inundated area. We assimilated synthetic SWOT observations into the
LISFLOOD-FP hydrodynamic model using a local ensemble batch smoother (LEnBS), simultaneously
estimating river bathymetry and flow depth. SWOT observations were obtained by sampling a ‘‘true’’ LIS-
FLOOD-FP simulation based on the SWOT instrument design; the ‘‘true’’ discharge boundary condition
was derived from USGS gages. The first-guess discharge boundary conditions were produced by the
Variable Infiltration Capacity model, with discharge uncertainty controlled via precipitation uncertainty.
First-guess estimates of bathymetry were derived from SWOT observations assuming a uniform spatial
depth; bathymetric variability was modeled using an exponential correlation function. Thus, discharge
and bathymetry errors were modeled realistically. The LEnBS recovered the bathymetry from SWOT
observations with 0.52 m reach-average root mean square error (RMSE), which was 67.8% less than
the first-guess RMSE. The RMSE of bathymetry estimates decreased sequentially as more SWOT observa-
tions were used in the estimate; we illustrate sequential processing of 6 months of SWOT observations.
The better estimates of bathymetry lead to improved discharge estimates. The normalized RMSE of the
river discharge estimates was 10.5%, 71.2% less than the first-guess error.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Satellite remote sensing data has been used to estimate river
discharge, complementing data measured by existing in situ gage
networks. River discharge, however, cannot be directly measured
from space; thus observable hydraulic data, such as channel width,
water surface elevation (WSE), slope, and cross-sectional area,
have been used to estimate discharge (e.g., Alsdorf et al., 2007a;
Bjerklie et al., 2005; Brackenridge et al., 2005; Kouraev et al.,
2004; LeFavour and Alsdorf, 2005).
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The upcoming Surface Water and Ocean Topography (SWOT)
mission will directly provide simultaneous mapping of inundation
area and inland WSE (i.e., river, lakes, wetlands, and reservoirs),
both temporally and spatially, using a Ka-band radar interferome-
ter (Alsdorf et al., 2007a; Durand et al., 2010b); this mission is
planned to launch in 2019. In addition, based on the dynamic
water mask from SWOT, the channel centerline and widths can
be extracted, following Pavelsky and Smith (2008). With these
observations, the SWOT mission will provide measurements of
water storage changes in terrestrial surface water bodies (Lee
et al., 2010) and information for characterizing river discharge at
global scales for all rivers 100 m and wider and perhaps as narrow
as 50 m in width (Rodríguez, 2009). Using existing technology, it is
possible to indirectly estimate WSE by the spatial intersection of a
water mask and a digital terrain model (DTM). For example, the
combination of all-weather Synthetic Aperture Radar (SAR) inun-
dation extent and a DTM is useful in estimation of WSE for flood
monitoring (e.g., Hostache et al., 2009; Schumann et al., 2010;
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Zwenzner and Voigt, 2009). However, as Alsdorf et al. (2007b) have
shown, such shoreline methods do not characterize WSE for com-
plex floodplain geomorphologies, such as those of the Amazon. In
contrast, SWOT will directly measure WSE; see Alsdorf et al.
(2007a) for a comprehensive review of existing technologies and
methods.

Because SWOT will measure WSE, not the true depth to the riv-
er bottom, the cross-sectional flow area will not be fully measured.
The SWOT sensor can directly measure the changes in water depth
and cross-sectional area above the lowest measured WSE, but
absolute river depths will not be observed. Once obtained, an esti-
mate of bathymetry would provide the remaining information
needed to estimate true cross-sectional flow area and river depth,
thus improving discharge estimation from SWOT measurements.
Some studies have shown the potential to estimate coastal and
stream bathymetry from optical sensors based on the relationship
between water depth and spectral reflectance (e.g., Lafon et al.,
2002; Fonstad and Marcus, 2005; Zhang et al., 2011); however, this
method works only for shallow waters with little or no sediment
load.

Data assimilation can be used to extract information, such as
bathymetry, that is not directly observable from the spaceborne
measurements (Reichle, 2008). Recent research has shown the po-
tential of SAR-derived WSE to reduce the uncertainty of a hydraulic
model, using data assimilation techniques, to support flood moni-
toring (e.g., Giustarini et al., 2011; Matgen et al., 2010; Neal et al.,
2009). However, these methods only apply to high flow conditions
(i.e., out-of-bank flood event) at local scales with a high resolution
DTM (i.e., derived from a Light Detection and Ranging (LiDAR) sen-
sor). Data assimilation schemes have also been used to character-
ize discharge from simulated SWOT measurements. Andreadis
et al. (2007) estimated river flow depth and discharge using an
assimilation scheme of WSE data, which were simulated by the
LISFLOOD-FP (Bates and De Roo, 2000; Trigg et al., 2009) model
with boundary inflows from the Variable Infiltration Capacity
(VIC) model (Liang et al., 1996). They showed that the Ensemble
Kalman Filter (EnKF) can reduce the river discharge root mean
square error (RMSE) from 23.2% to 10% over an 84-day simulation
period compared to the estimate without assimilation; river
bathymetry was assumed to be known. Durand et al. (2008) dem-
onstrated an ensemble-based data assimilation method for esti-
mating bathymetric depths and slopes from WSE measurements
and the LISFLOOD-FP model over a 240-km reach of the Amazon
River floodplain. Their scheme was able to recover the bathymetric
depth and slope to within 56 cm and 0.30 cm/km, respectively, by
exploiting the flooding extent over the Amazon River floodplain.
However, their results were limited by the assumption of simpli-
fied bathymetry; spatial variations in bathymetry at scales finer
than 50 km were not modeled. Biancamaria et al. (2011) assimi-
lated synthetic SWOT observations of the Ob River to estimate riv-
er water depth variations, with river bathymetry assumed to be
known. They showed that the assimilation scheme at the nominal
orbit of the mission reduced the spatial and temporal RMSE of the
water depth by 59% and 66%, respectively. These studies either
neglected bathymetry error, or treated bathymetry in a simplified
way, which does not represent realistic spatial variations of
bathymetry.

The goal of this study is to find an optimal way to estimate
bathymetry in order to reduce the uncertainty in SWOT estimates
of discharge in a large river system. Here, we introduce a new
assimilation approach as an extension of the EnKF to estimate
bathymetry from observed WSE coupled with a hydrodynamic
model. We assume that hydrodynamic model simulations of large
rivers are largely governed by discharge boundary conditions,
bathymetry, and roughness coefficients (Manning’s n). The Man-
ning’s n may be defined on the basis of the physical characteristics
of the river (Chow, 1959); nonetheless, such a priori estimates will
have some associated uncertainty. While a data assimilation
scheme could provide estimates of both the roughness coefficient
and bathymetry, uncertainty in the Manning’s n is not considered
in this study due to the focus on the bathymetry uncertainty; fu-
ture work will address the roughness coefficient. Realistic model-
ing of errors in boundary inflows and bathymetry is critical for
evaluating discharge estimates derived from SWOT measurements.
In this study, the true discharge boundary conditions come from
USGS streamflow gages, rather than a model. The first-guess dis-
charge boundary condition is derived from the VIC hydrologic
model (Liang et al., 1994) driven by meteorological data (Maurer
et al., 2002) that is similar to what is globally available. First-guess
estimates of bathymetry are derived from measured SWOT heights
assuming a spatially uniform depth with spatially correlated
downstream variability. Having realistically described uncertain-
ties in discharge and bathymetry, we evaluate the ability of a data
assimilation algorithm to recover bathymetry and discharge using
SWOT observations.
2. Description of the study area

Our study area is the Ohio River Basin; the Ohio River flows
from Pittsburgh, PA to the Mississippi River at Cairo, IL (Fig. 1).
The river is approximately 1580 km long and drains an area of
528,000 km2. The annual average flow is 8733 m3/s, which is the
third largest river by discharge in the United States (Benke and
Cushing, 2005). We chose 12 of the major Ohio River tributaries
and seven of the minor Ohio River tributaries to include in the
hydrodynamic model; the 12 major and seven minor tributaries
represent a total of 474211 km2 (89.8%) of the Ohio River Basin
drainage area (for details, see Table 1). The remaining 10.2% of
the drainage area is drained by minor streams, which we do not
model explicitly in this study.
3. River model

We use an observing system simulation experiment (OSSE; e.g.,
Andreadis et al., 2007) to assess the potential capabilities of the
assimilation system to characterize river bathymetry. The OSSE
largely consists of two separate simulations; the first is the ‘‘true’’
simulation, which is used to generate synthetic SWOT observations
over the entire Ohio River and to evaluate the assimilation results.
The second simulation is the ‘‘open-loop’’ simulation, which is
forced using corrupted model inputs, namely discharge boundary
conditions and river bathymetry.

The LISFLOOD-FP hydrodynamic model (Bates and De Roo,
2000; Trigg et al., 2009) was used to generate both the ‘‘truth’’
and ‘‘corrupted’’ estimates for the assimilation. The model uses a
two-dimensional (2-D) diffusion wave representation of floodplain
flow and a one-dimensional (1-D) approach to simulate river chan-
nel flow using a rectangular channel geometry assumption. Here,
we utilized the 1-D scheme to develop an algorithm for in-channel
flow based on the diffusive wave approximation to the full St. Ve-
nant equations (Trigg et al., 2009). To model the Ohio River in the
LISLOOD-FP model, estimates of the river centerline, channel bed
elevation along the centerline, and channel width are needed, as
well as the boundary inflow data for each tributary. The ‘‘true’’
and the ‘‘open-loop’’ discharge boundary conditions and river
bathymetry are derived from completely different datasets.

3.1. True simulation

The river centerlines, including those of the major tributaries
were manually defined at an approximately 500-m spatial resolu-



Fig. 1. A map of the Ohio River, including 12 major tributaries and seven minor tributaries used in the model. The contributing drainage area of each tributary is shown by the
relative thickness of the blue lines. The USGS gages (red dots) used for the boundary conditions are shown. Solid lines divide the river into four sections that were used for the
analysis of results.

Table 1
Drainage area of each of the 12 major (bold tributary name) and seven minor tributaries included in the model.

Tributary name Flow distance from upstream
(km)

Drainage area
(km2)

USGS gauge ID Drainage area at gage
(km2)

Drainage area covered by gauge
(%)

Beaver River 20.3 8106.7 03107500 8044.5 99.2
Muskingum River 250.5 20823.5 03150000 19222.9 92.3
Little Kanawha River 269.2 6008.8 03155000 3926.4 65.3
Hocking River 291.9 3082.1 03159500 2442.4 79.2
Kanawha River 396.2 31597.9 03198000 27060.2 85.6
Guyandotte River 447.0 4325.3 03203600 2157.5 49.9
Big Sandy River 457.9 11085.1 03212500 5552.9 50.1
Little Sandy River 508.9 1875.2 03216500 1036.0 55.2
Scioto River 540.3 16860.8 03237020 15115.2 89.6
Little Miami River 710.4 4325.3 03245500 3115.8 72.0
Licking River 720.4 9505.3 03253500 8547.0 89.9
Great Miami River 754.7 13985.9 03274000 9401.7 67.2
Kentucky River 838.2 18052.2 03290500 16006.1 88.7
Salt River 972.3 7485.1 03298500 3100.2 41.4
Green River 1213.8 23905.6 03320000 19595.9 82.0
Wabash River 1313.3 85728.6 03377500 74164.3 86.5
Cumberland River 1431.2 46412.6 034315005 33307.2 71.8
Tennessee River 1449.5 105956.4 03593500 85832.2 81.0

Sum 474211.3a 392717.3a 82.8
Ohio River Basin 528202.18b

a The area includes the upstream drainage area (Allegheny and Monongahela River) on the mainstream of the Ohio River.
b The area includes all the additional smaller tributaries that drain into the Ohio River.
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tion, combining data from the U.S. Army Corps of Engineers
(USACE) dataset, which is a point layer at a spatial resolution of
8 km, with the data from the HydroSHEDS (USGS HydroSHEDS,
http://hydrosheds.cr.usgs.gov) river network, derived from the
Shuttle Radar Topography Mission at a 15 arc-sec resolution. To
make the true model as realistic as possible, channel bed elevation,
width, and roughness were extracted from the USACE dataset.
(Note that the USACE true bathymetric data were not used for
the open-loop simulation.) The USACE dataset was developed for
the CASCADE model (for details, see Lee et al., 2003), which is an
operational model of the Ohio River system. Note that the low
(8 km) spatial resolution of the CASCADE model is not appropriate
to generate synthetic SWOT observations for use in this study; thus
we used the LISFLOOD-FP model in this study. The LISFLOOD-FP
model uses the rectangular channel assumption for river flow
modeling; thus, bed elevation, effective channel width and
roughness coefficients were extracted along the Ohio River from
the USACE dataset. The CASCADE model represents the river
cross-sectional flow area A as a function of river stage or height
h. The rectangular approximation to this stage-area curve is given
by As, which is calculated from the best-fit line to the true A(h)
curve over the range of h modeled over a 1-year simulation:
AsðhÞ ¼ a1hþ a0 ð1Þ

Here a1 is the effective river width; h is the water elevation; and
a0 is an offset parameter. The bed elevation can be found by setting
A(h) = 0 , and solving for h, the elevation corresponding to the zero
cross-sectional area; the effective bed elevation is thus equal to
�a0/a1.

http://hydrosheds.cr.usgs.gov
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The boundary inflow of the 12 major and seven minor tributar-
ies was obtained from the USGS streamflow gage network from
March 1, 1996 to August 24, 1996 (176 days). Also, the outlet stage
from the USGS gage (03611500) was used as the downstream
boundary condition, following previous work (e.g., Andreadis
et al., 2007; Durand et al., 2010a). Note that the first-guess bound-
ary inflows were obtained independently from the gage measure-
ments using the VIC model, and their development is described
in more detail in Section 3.2.2. Fig. 1 shows the location of each
gage used as a boundary condition; detailed information for each
gage is shown in Table 1. The gages represent between 50% and
99% of the total drainage area of each tributary. Taken together,
the gages represent a total of 392,717 km2, which is approximately
74.3% of the Ohio River Basin drainage area. To make the model as
realistic as possible, compensation for the remaining 25.7% of the
drainage area is needed. To accomplish this, we scaled the dis-
charge based on the 30-year (1979–2008) average discharge and
drainage area of each tributary, by assuming a power law relation-
ship (Furey and Gupta, 2005) between the mean discharge Qgage

and drainage area Bgage at the gage; defined as:

Q gage ¼ bBc
gage ð2Þ

where b and c are best-fit coefficients. Then we estimated the total
flow Qtot by scaling Qgage by the ratio of Bgage to Btot:

Q tot ¼ Q gage
Btot

Bgage

� �c

ð3Þ

To verify that this LISFLOOD-FP model setup, used to generate
the true discharge and synthetic SWOT observations, is producing
reasonable results, we compared the simulated discharge at the
modeled basin outlet on the Ohio River with the observed discharge
at the USGS gage at the same location. Although the stage used for
the model boundary condition and the model-calculated discharge
are highly dependent, this comparison is intended to show that the
model is producing reasonable results. Fig. 2a shows estimates of
river discharge at the downstream model outlet. The model dis-
charge matches the observed discharge with a normalized root
mean square error (NRMSE) of 27.0% and a correlation coefficient
of 0.93. The LISFLOOD-FP model does not perfectly represent the
real system; for instance, the navigation locks and dams on the Ohio
River were not modeled (Lee et al., 2003). In addition, model perfor-
mance might improve if we were to use a downstream height
boundary condition that is located further downstream than where
we are evaluating the discharge, in order to avoid any backwater ef-
fect. Still, we attempted to simulate the real system closely based on
the given ancillary data from the USACE and gage dataset using the
up-scaling scheme. Note that since the model was used to generate
synthetic data for the assimilation, the accuracy of the model is not
Fig. 2. ‘‘True’’ LISFOOD-FP model results are shown for the Ohio River. (a) Modeled disch
(b) Example of WSE on August 24, 1996 and the bathymetry.
the major issue for this study; thus no LISFLOOD-FP model calibra-
tion was performed. Fig 2b shows examples of modeled WSE on
August 24, 1996 and the bathymetry along the Ohio River. WSE from
the true simulation were used to simulate the synthetic SWOT
observations, as described in Section 4. The spatial resolution of
the LISFLOOD-FP model at the 500-m resolution indicates signifi-
cant spatial variations in the bathymetry, e.g., adverse bed slopes
over short distances are not uncommon.
3.2. Open-loop simulation for ensemble member generation

Data assimilation schemes combine observations with forecast
model states in order to obtain ‘the best’ estimate of the current
model states. The open-loop simulation was used to simulate
ensemble and ensemble covariance of forecast model states. The
open-loop ensemble is generated by: (1) creating an ensemble of
hydrodynamic model inputs of bathymetry and boundary inflows,
and (2) propagating the ensemble of model inputs through the
model.

According to Evensen (2009), as the size n of the ensemble
increases, the errors in the Monte Carlo sampling decrease with
1/
p

n. The size of the ensemble, however, highly affects the compu-
tational cost of the data assimilation. A bigger problem is that the
LISFLOOD-FP model, used to generate ensembles, requires signifi-
cantly higher computational cost than the data assimilation
algorithm based on the given assumptions (Hunter et al., 2008;
Neal et al., 2011); thus, we limited the ensemble size to 20 mem-
bers of bathymetry and boundary inflows of each tributary, respec-
tively, for the algorithm, following previous work (e.g., Andreadis
et al., 2007; Biancamaria et al., 2011; Durand et al., 2008).

Manning’s n is one of the crucial components for the model;
however, it may be incorporated in the hydraulic model following
a simplified assumption. For example, Andreadis et al. (2007) and
Neal et al. (2009) used a spatially uniform Manning’s n selected
based on the characteristics of the natural river type (e.g., for de-
tails, see Chow, 1959). Giustarini et al. (2011) used the Manning’s
n calibrated by using rating curves; however, this approach re-
quires gaging data to calibrate the coefficients, which prohibits
its use in ungaged basins. In this study, we focus on estimation
of river bathymetry, and uncertainty in the Manning’s n is not con-
sidered. Future studies will explore simultaneous estimation of
roughness, bathymetry, and flow.
3.2.1. Bed elevation
Creation of a first-guess bathymetry ensemble required two

steps. First, an initial bathymetry profile ~z along the Ohio River
was obtained by subtracting a spatially-uniform nominal water
depth of 7 m from mean SWOT WSE measurements. Second, the
arge at the downstream model outlet, as well as the discharge from the USGS gage.



Fig. 3. The semivariogram model for the bed elevation.
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bathymetry uncertainty and spatial variability were represented
using the covariance matrix C; the covariance matrix was calcu-
lated using an exponential model of the bathymetry spatial
autocorrelation:

C ¼ r2exp�
3X
L ð4Þ

where X is the vector of distances between the modeled pixels over
the entire river. The spatial correlation length L was assumed to be
100 km, estimated by a semivariogram analysis; Fig. 3 shows the
semivariogram results. The standard deviation r was assumed to
be 2.5 m. Finally, 20 ensemble members of bathymetry z�k were
independently generated by adding noise zerr to ~z:

z�k ¼ ~zþ zerr ð5Þ

where the subscript k denotes ensemble member. The errors zerr

were represented from the multivariate normal distribution with
zero mean and covariance C.

3.2.2. Boundary conditions
Errors in the boundary inflow of each tributary were simulated

by corrupting the precipitation inputs to the VIC model (Liang et
al., 1994, 1996). VIC is a macroscale hydrologic model that solves
surface energy and water balances over a grid cell and has been
widely applied to studies of water resources management, land–
atmosphere interactions of moisture, and climate change (e.g.,
Bowling and Lettenmaier, 2010; Maurer et al., 2002). Precipitation
used to force macroscale hydrologic models exhibits both spatial
and temporal errors (Nijssen and Lettenmaier, 2004; Lowrey and
Yang, 2008). Here, corrupted precipitation was modeled by adding
storm location errors to the spatial distribution of interpolated
in situ observations of precipitation (Maurer et al., 2002). Errors
in the latitude and longitude location of the storm center were in-
ferred from differences between daily precipitation fields from the
European Centre for Medium-Range Weather Forecasts (ECMWF)
40-year re-analysis data (ERA-40, http://data.ecmwf.int/) and
interpolated precipitation data from in situ measurements (Maurer
et al., 2002). Initially, the center of mass was calculated for precip-
itation in the Ohio River Basin from the Maurer et al. (2002)
ground-based data set and from ERA-40 for each time step. Then
the differences in the center of mass between the two data sets
were calculated, and assumed to be representative of the uncer-
tainty of the location of rainfall events. A Gaussian distribution
was then fit to the differences, both in terms of latitude and longi-
tude. Finally, 20 ensemble members of precipitation were gener-
ated by shifting the entire Maurer et al. (2002) precipitation field
at each time step by applying additive latitude errors, with 0.24�
mean and a standard deviation of 1.33�, and additive longitudinal
errors, with 0.05� mean and a standard deviation of 1.91�. Note
that we did not explicitly model uncertainty in the precipitation
event magnitude; however, due to the perturbation of the precip-
itation position, storms often moved in or out of the study area. As
a result, uncertainty in precipitation magnitude was implicitly rep-
resented in each ensemble member. Because precipitation magni-
tude errors were not explicitly modeled, the assimilation scheme
effectively gives more weight to the coupled VIC and LISFLOOD-
FP model (and less weight to the SWOT WSE observations) in the
assimilation. It is, therefore, possible that inclusion of precipitation
magnitude errors would improve results in this paper. A full
assessment of precipitation errors will be taken into account in a
future study.

The 20 ensembles of the first-guess downstream boundary con-
dition were generated by adding noise to synthetic SWOT WSE
observations, which are described in Section 4. The uncertainty
in the downstream boundary condition was modeled by zero mean
Gaussian random error with a standard deviation of 0.5 m.

3.2.3. Ensemble generation
Fig. 4 shows examples of the ensemble statistics for the data

assimilation scheme, which is a best-case scenario during
the experimental period. In most cases, generated ensembles
contained significant bias, which is described in more detail in
Section 7.2. Fig. 4a shows the discharge of the 20 ensemble
members along the main stem of the Ohio River on March 12.
The ensemble range does not include the true discharge on most
cross-sections due to bias in the boundary inflows. Fig. 4b shows
the relative bias of the flow shown in Fig. 4a. The relative bias of
flow e, is determined by:

ep ¼
�Q p;est � Q p;true

�� ��
Q p;true

ð6Þ

The upstream inflow, which includes two of the major tributar-
ies, the Allegheny and Monongahela Rivers, has a bias of 26.6%. As
flow from each tributary enters the Ohio River, the bias changes.
Overall, the bias of the upstream part (flow distance less than
1200 km) shows values larger than 20% and shows a slightly down-
ward trend from upstream to downstream, which means that the
underestimated upstream inflow highly affected the entire up-
stream section, despite better estimates of discharge at other trib-
utaries entering along the upstream section. In addition, after the
Green, Wabash, and Cumberland Rivers at locations around 1210,
1310, and 1430 km from the upstream location, respectively, join
the Ohio River, the bias sharply decreased. The reason is that the
VIC model overestimated the discharge of those rivers. Differences
between true and modeled discharge could be caused by both a
mismatch between true precipitation and precipitation estimated
by Maurer et al. (2002), and errors in the VIC model parameteriza-
tion and model structure. Fig. 4c and d show ensembles of water
depth and bed elevation, respectively, for March 12, 1996.
4. SWOT observations

We generated synthetic SWOT observations for the main stem
of the Ohio River using the true simulation described in Section
3.1. The synthetic SWOT observations were generated by using
the SWOT swath coverage over the study site, and estimates of
water level that were obtained from the LISFLOOD-FP simulation
results. The generation of SWOT observations started with obtain-
ing the swath coverage by deriving the ground track. The latter was
accomplished using the heading of the satellite with a 22-day revi-
sit time and 78� inclination (Rodríguez, 2009), as well as the pre-
dicted satellite locations (latitude and longitude). This track (i.e.,
the ground location path of the satellite) was used to generate

http://data.ecmwf.int/


Fig. 4. Examples of the ensemble members for the data assimilation; (a) ensembles of 20 possible discharges along the Ohio River, (b) the relative bias of the flow, (c)
ensembles of the water depth, and (d) ensembles of the bed elevation for March 12, 1996 are shown, as well as the mean and simulated truth values.
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the SWOT observational swath with a proposed 140-km swath
width of the ground path. Fig. 5 shows the SWOT coverage of the
Ohio River with the LISFLOOD-FP modeled pixels and the number
of observations per imaged area.

We calculated synthetic SWOT observations of river slope,
width, and WSE for each modeled pixel as the true model states,
plus a measurement error. The true model states were obtained
from the true simulation of the LISFLOOD-FP model. For this study,
we only considered height measurement error herr. Based on the
specification of the SWOT mission, the actual cross-track ground
resolution varies from 10 m in the far swath to about 60 m in the
Fig. 5. The number of observations in each SWOT 22-day revisit period. The bold
blue curved line is the Ohio River.
near swath. The resolution in the along-track direction is about
2 m, derived by means of synthetic aperture processing. To sim-
plify the model, however, we conservatively assumed that the
SWOT spatial resolution in both the along-track and cross-track
directions is approximately 50 m. Errors in each SWOT observation
were simulated by zero mean Gaussian random error with a stan-
dard deviation rh of 0.5 m, following previous work (e.g., Durand
et al., 2010a; Lee et al., 2010); that is the worst-case of elevation
accuracy for SWOT (Enjolras et al., 2006; Rodríguez, 2009). Based
on these assumptions, we modeled the measurement error herr

using:

herr ¼ N 0;
1ffiffiffiffiffiffiffiffi
nobs
p rh

� �
ð7Þ

where nobs is the number of SWOT pixels that would be contained
within the LISFLOOD-FP modeled pixel. The nobs is calculated from
the river channel width for each LISFLOOD-FP pixel.
5. Data assimilation strategy

5.1. Ensemble Kalman Filter

A data assimilation scheme is typically used to estimate time-
varying model state variables, e.g., hydraulic model states, such
as discharge or water depth. For example, Andreadis et al. (2007)
and Biancamaria et al. (2011) estimated river flow depth using a
data assimilation scheme. In addition, data assimilation techniques
can be used to estimate model parameters that are not directly
observable (e.g., river bathymetry) via state-parameter estimation
schemes (Evensen, 2009). In this study we utilize the EnKF
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(Evensen, 1994, 2003, 2009) to simultaneously estimate river
depth and bathymetry using SWOT observations.

Our implementation of the EnKF algorithm involves: (1) the
propagation of the model state variables in time via the LIS-
FLOOD-FP model, and (2) the update of the state variables based
on SWOT observations. The EnKF analysis equation for the update
is:

xþk ¼ x�k þ Kðdþwk � Hx�k Þ ð8Þ

where x+ is the posterior state estimate (or analysis); x� is the prior
state estimate (or forecast); d is the observation; w is a randomly-
generated error included to prevent the introduction of spurious
correlations (Burgers et al., 1998); and H is the observation opera-
tor, which linearly relates the observations and the state. The
Kalman gain, K, is given by:

K ¼ P�HTðHP�HT þ RÞ�1 ð9Þ

where P� is the a priori state error covariance that is directly ob-
tained from the ensembles; and R is the observation error covari-
ance that is determined by the uncertainty of the measurements;
following previous studies, we assumed measurement errors are
uncorrelated, and so that the height error at each pixel can be mod-
eled with Eq. (7); R is thus generated from a multivariate normal
distribution with zero mean where the covariance matrix is rh

2

on the diagonal, and zero elsewhere.
We apply a data assimilation scheme to simultaneously esti-

mate the river depth y and bathymetry z from measurements of
river height d; note d = z + y. The vector of unknowns is thus
x = [y,z]. Thus, at a single location along the river and for a single
observation time:

Hx ¼ H
y

z

� �
ð10Þ

where H = [1 1]. To capture the spatial and temporal correlations of
the river system, we use a smoothing approach, which is described
below.

5.2. Local ensemble batch smoother

River discharge shows a large degree of spatiotemporal autocor-
relation; thus, a SWOT measurement at one overpass not only con-
tains information about that time, but also about times prior and
after the overpass. An ensemble of model states is sequentially up-
dated through the EnKF when observations become available; thus
the method shows the limits of consideration of the spatiotempo-
ral correlation between model states and measurements. Here, we
used an ensemble batch smoother (EnBS) algorithm to apply obser-
vations made at one overpass to model simulations at other times,
and to apply observations of one part of the river to other river
locations (Dunne and Entekhabi, 2005). Ensemble smoothers are
an extension of the EnKF (Evensen and van Leeuwen, 2000; van
Leeuwen and Evensen, 1996). Here, we selected a 22-day smooth-
ing window for batch processing; this was chosen for convenience
to correspond to the SWOT repeat cycle. Note that the computa-
tional burden increases non-linearly with the length of the
smoothing window. The augmented observation vector D contains
all observations during the 22-day smoothing window:

D ¼ ½d3;d4;d6;d7;d9;d10;d12; d13; d15;d16;d19; d22�T ð11Þ

where each di is a vector of all observed river pixel heights on day i.
The subscripts in the above equation refer to the day of the 22-day
cycle; some subscripts are absent because no pixel in the model do-
main was observed on those days. Thus, some part of the Ohio River
was observed on 12 of the 22 days of the cycle. The augmented state
vector X contains the state of water depths y and bed elevation z at
all times, including times when no SWOT observations are
available.

X ¼ ½y1; y2; . . . ; y22; z�
T ð12Þ

In addition, the covariance matrices P and R were modified to
correspond to the augmented observations and state vectors,
respectively.

We used localization techniques to avoid spurious correlations
between the observations and state variables over long spatial dis-
tances (Hamill et al., 2001). In addition, the localization method
can be useful to reduce the impact of limited ensemble size (Even-
sen, 2003, 2009). Here, the covariance localization q was used, fol-
lowing Reichle and Koster (2003), utilizing Gaspari and Cohn
(1999, their Eq. 4.10). Finally, we used the local ensemble batch
smoother (LEnBS) to estimate water depths and the bed elevation
from the SWOT observations:

Xþk ¼ X�k þ ~KðDþ ~wk � HX�k Þ ð13Þ

where ~w is a vector of randomly-generated error, and the Kalman
gain ~K is given by:

~K ¼ ½ðq � ~PÞHT �½Hðq � ~PÞHT þ ~R��1 ð14Þ

where q is the covariance localization; ~P is a prior state error covari-
ance of the augmented X; ~R is the observation error covariance of D;
� is the symbol of the Schur product; and the observation operator
H is given by:

H ¼ ½h1 . . . h22 jh23� ð15Þ

where hi is the observation operator of water depth state, which lin-
early relates the observations di to the water depth yi, for observa-
tion day i = 1,2, . . . ,22. The operators are diagonal matrices and the
diagonal entries contain only 1 and 0; 1 indicates that the state was
observed and 0 indicates that it was not. h23 is the observation oper-
ator of the bed elevation state and is an identity matrix.

6. Experimental design

To evaluate the potential for characterizing the river water
depths and bed elevation of the Ohio River from SWOT observa-
tions, an OSSE was designed. For the OSSE, synthetic SWOT obser-
vations were generated as described in Section 4. Then, we
integrated the observations into the LISFLOOD-FP model using
the data assimilation scheme described in Section 5 to estimate
the bathymetry along the main stem of the Ohio River. The LEnBS
scheme is applied sequentially to each 22-day cycle during the
experimental period. Uncertainty in bathymetry is sequentially
analyzed and updated. There is no feedback to the VIC model for
the boundary inflows. We assume that the bathymetry does not
change during the simulated period. Given this assumption, the
prior state vector X� of each LEnBS in Eq. (13) was defined by the
ensemble generated by an open-loop simulation with the ensem-
ble of boundary inflows for each cycle and the posterior estimate
bathymetry of the previous cycle. The study period was March 1,
1996 to 23 August 1996 (176 days or eight SWOT orbit cycles).

The error of the bed elevation and water depth estimates was
evaluated after each LEnBS processing cycle by comparison with
the true values at each modeled pixel along the main stem of the
Ohio River. In addition, we examined how the estimated bathym-
etry impacted river discharge estimates by determining the differ-
ence between true discharges from the LISFLOOD-FP model and
estimated instantaneous river discharges at the time of a SWOT
measurement. As mentioned above, SWOT can directly measure
WSE and surface slope, and channel width can be extracted from
the dynamic water mask derived from the SWOT. Thus, the



Fig. 6. Graph shows the examples of the synthetic SWOT observations and the WSE simulated by the LISFLOOD-FP for the Ohio River on (a) day 3 and (b) day 16 of the
experimental period.

Fig. 7. Examples of the initial estimates of (a) bed elevation and (b) water depth
(March 12, 1996). After filtering, the estimates of bed elevation and water depth
were clearly improved in both their spatial pattern and accuracy (19.8% and 38.3%,
respectively).

1 For interpretation of color in Figs. 1, 5 and 7, the reader is referred to the web
version of this article.
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instantaneous river discharges can be calculated using the
Manning’s equation with SWOT observations and estimated
bathymetry from the LEnBS. The equation is given by:

Q̂ ðtÞp ¼
1
np

wpy
5
3ðtÞ
p S

1
2ðtÞ
p ð16Þ

where Q̂ ðtÞp is the estimated discharge at pixel p at every time t; np is
the Manning’s roughness coefficient at pixel p; wp is the channel
width at pixel p (note that roughness and width are assumed to
be constant in time); SðtÞp is the surface slope at pixel p at every time
t; and channel water depth at pixel p at every time t, yðtÞp is deter-
mined by:

yðtÞp ¼ dðtÞp;obs � ẑp ð17Þ

where dðtÞp;obs is the SWOT WSE observation at pixel p at every time t,
and ẑp is the ensemble mean of the bed elevation. The instantaneous
discharge error at pixel p, qp, was evaluated by the NRMSE, given
by:

qp ¼
1
n

Pno
o¼1ðQ

ðoÞ
p;est � Q ðoÞp;trueÞ

2
h i0:5

1
nt

Pnt
t¼1Q ðtÞp;true

ð18Þ

where no is the total number of SWOT observations, and nt is the to-
tal number of days simulated.

7. Results and discussion

7.1. SWOT observations

The Ohio River was measured on days 3, 4, 6, 7, 9, 10, 12, 13, 15,
16, 19, and 22 within the 22-day repeat time (a total of 12 days).
Fig. 6 shows examples of the synthetic SWOT WSE observations
for the Ohio River main stem derived from the LISFLOOD-FP model
results, as described in Section 4. The observed flow distances
along the main stem for two different days, day 3 and day 16 of
the simulation period, are 259.1 and 459.5 km, respectively, in
spite of the 140-km swath of the SWOT. The reason is that the flow
direction of the Ohio River is not perpendicular to the satellite
track. Some reaches of the Ohio River can be measured twice in a
day, depending on the satellite heading direction and the sensor
viewing characteristics. All pixels in the Ohio River were measured
at least twice in the 22-day cycle and up to four times during the
orbital cycle.

7.2. Estimating bed elevation and water depth

Fig. 7 shows the LEnBS assimilation results based on the initial
ensemble and the synthetic SWOT observations for the first SWOT
cycle, March 1 to March 22. In Fig. 7a, the first-guess of the bed
elevation estimates (green1 dashed line) had a 1.62 m reach-aver-
age RMSE. The posterior bed elevation estimates (blue short
dashed line) after the assimilation were clearly improved over
the prior estimates; the posterior estimates had a 1.30 m reach-
average RMSE, which is 19.8% less than the first-guess of the bed
elevation estimates. In addition, the posterior estimates clearly fol-
low the spatial pattern of the true bed elevation (red line). There is
notable improvement at the Falls of the Ohio, at around the 950 km
flow distance. March 12, 1996 was selected for an example of rep-
resentative river depth estimates and is shown in Fig. 7b. Similar to
the bed elevation estimates, the initial prior estimates of water
depth showed relatively low correlations of 0.43 when compared



Fig. 9. Graph shows the reach-average RMS error for the bed elevation estimates of
each cycle after the LEnBS processing. The error after processing 8 cycles is 0.52 m, a
67.8% improvement in accuracy compared to the first guess bed elevation
estimates.
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to the truth. After assimilation, the posterior water depth estimates
clearly recovered their spatial pattern (correlation coefficient of
0.91), and the reach-average RMSE decreased. The error of the prior
estimates is 1.31 m, compared to 0.81 m for the posterior esti-
mates, which is a 38.3% improvement in terms of RMSE.

Fig. 8 presents the mean bed elevation estimates after observa-
tion/assimilation cycle 8 along the main stem of the Ohio River,
compared with the truth and first-guess simulations. The error
after assimilation cycle 8 shows a 0.52 m reach-average RMSE,
which is 67.8% less than the first-guess. The first-guess of the
bed elevation estimates does not represent the spatial pattern of
the Falls (see Fig. 8d). After assimilation, remarkable improvement
was observed as more SWOT observations were used.

Fig. 9 shows the reach-average RMSE of each cycle after the
LEnBS processing. In general, the errors decreased after performing
each LEnBS update. As these bathymetry estimates contain more
SWOT observations with additional cycles, the accuracy improves.
From the results, however, we also found that the RMSE of the bed
elevation estimate increased for cycles 3, 4, and 7.

To explore why bed elevation errors increased during cycles 3,
4, and 7, we divided the main stem of the Ohio River into four sec-
tions (Fig. 1; Table 1). In the first section, the Allegheny, Mono-
ngahela, Muskingum, and Kanawha Rivers join the main stem of
the Ohio River; in the second section, the Big Sandy, Scioto, and
Fig. 8. Graphs show the LEnBS update results (bed elevation) of each cycle. After perf
Licking Rivers join the main stem; in the third section, the Great
Miami and Kentucky Rivers join the main stem; and in the last sec-
tion, the Green, Wabash, Cumberland, and Tennessee Rivers join
the main stem. Fig. 10 shows the reach-average RMSE for the
bed elevation of each section (dashed line), compared with the
orming each LEnBS update, the errors were clearly reduced along the Ohio River.



Fig. 10. Graphs show the reach-average RMSE of each section, compared with the RMSE of the entire river after each LEnBS processing cycle.
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RMSE of the entire river (solid line) after each LEnBS processing
cycle. The increase in error for cycles 3 and 4 mainly came from
Section 1 (Fig. 10a) and the increase in error for cycle 7 came from
Sections 1 and 2 (Fig. 10a and b). Overall, the accuracy of the up-
stream sections was not as good as the accuracy of the down-
stream sections.

The increase in bathymetry errors is due to underestimation of
boundary inflows for the upstream river sections during some cy-
cles. Section 1 of the Ohio River has four major and three minor
tributaries; hydrographs of these tributaries are shown in Fig. 11.
Fig. 11a shows the hydrograph of the gage that corresponds to
the Allegheny and Monongahela Rivers, the two rivers that join
to form the Ohio River at Pittsburgh, PA. From Fig. 11a, there is a
significant underestimation between the true USGS flows and the
VIC-generated flow ensemble within the experimental periods of
cycles 3 and 4 (45–88 days). Since the assimilation is performed
independently for each cycle, there is effectively a severe low bias
of the ensemble during cycles 3 and 4. Table 2 shows the RMSE of
the discharge and relative bias at the location where each tributary
joins the Ohio River main stem. For example, the Allegheny and
Monongahela Rivers tributaries had biases of 48.0% and 63.7%,
respectively, over cycles 3 and 4 (for details, see Table 2). Signifi-
cant bias is expected to affect the estimate of the prior water depth.
One of the underlying assumptions in the derivation of the EnKF is
that the states are unbiased (Evensen, 1994, 2003). If bias is signif-
icant, it must be dealt with explicitly within the assimilation
scheme; a number of methods exist for doing so (De Lannoy
et al., 2007a, 2007b; Keppenne et al., 2005). From Table 2, it ap-
pears that approximately 40% bias is a threshold, as shown by
the shaded cells. If inflows are less biased than 40%, the LEnBS im-
proved the bathymetry estimates.
7.3. Discharge estimation

Based on first-guess bed elevations and bed elevations esti-
mated by cycles 1 and 8 of the LEnBS, we estimated instantaneous
discharge results for the Ohio River at the time of each SWOT over-
pass over the entire experimental period using Eq. (16). The dis-
charge results were compared to the true values that were
modeled by LISFLOOD-FP (for example, see Fig. 12). Fig. 12a and
b show the hydrograph at the locations where the Kentucky and
Tennessee Rivers join the Ohio River (around 840 and 1450 km
flow distance), respectively; the discharge estimates are notably
improved by the better bathymetry estimates. The time-averaged
discharge RMSE of the entire Ohio River is 1348 m3/s (35.7%
NRMSE) for the first-guess estimates of the bed elevation. The
time-averaged discharge RMSEs are 904 m3/s (27.4% NRMSE) and
389 m3/s (10.5% NRMSE) with bed elevation estimates at cycles 1
and 8 of the LEnBS, respectively; the errors show a 32.9% and
71.2% improved accuracy compared with the first-guess of the
bed elevation, respectively.

The combination of errors in bathymetry and errors in dis-
charge boundary conditions represents a difficult estimation prob-
lem, since a discrepancy in the first-guess height and the height
observation might be due both to an inaccurate discharge and to
inaccurate river bathymetry. The successful estimation of bathym-
etry illustrates that the assimilation scheme is capable of using the
spatial and temporal autocorrelation provided by the hydraulic
model to accurately update the first guess of river bathymetry.
Essentially, this suggests that the river bathymetry creates a un-
ique water elevation ‘‘signature’’ that is separable from the river
discharge signal using the model covariances (see Eq. (14)) and a
number of SWOT cycles. In this study, this no longer holds if the



Fig. 11. Hydrographs of six tributaries in Section 1 are shown: (a) Allegheny and Monongahela River, (b) Beaver River, (c) Muskingum River, (d) Little Kanawha River, (e)
Hocking River, and (f) Kanawha River.
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ensemble is biased more than approximately 40%. Once bathyme-
try has been estimated, accurate estimates of river discharge can
be calculated by using the SWOT observations with the Manning’s
equation. Future work will explore the effect of errors in Manning’s
n, and the prospects for simultaneous estimation of bathymetry
and Manning’s n.
8. Conclusions

In this study, we presented an algorithm for estimating river
bathymetry from the data assimilation of synthetic SWOT observa-
tions into the LISFLOOD-FP hydrodynamic model. The LEnBS
assimilation framework showed the potential of estimating the
bed elevation and water depths from SWOT observations, resulting
in improved estimates of river discharge using SWOT observations.
Bed elevation was successfully estimated; no in situ measurements
of river bathymetry were used in the assimilation framework. We
utilized a smoothing window of 22 days, and processed a total of
eight 22-day cycles. After the first cycle, the accuracy of the bed
elevation estimates was a 1.29 m reach-average RMSE, which is
19.8% less than the first-guess. After cycle 8 (after 176 experimen-
tal days), the bathymetry showed a 0.52 m reach-average RMSE,
which is 67.8% less than the first-guess. Instantaneous river dis-
charge estimates were computed using Manning’s equation, based
on bed elevation estimated by the LEnBS. The instantaneous river
discharge estimate over the experimental period had a 10.5%
NRMSE, which is a 71.2% improved accuracy compared with the
river discharge estimates using the first guess of bed elevation.

These results suggest that assimilation processing is useful for
estimating river bed elevation. The results also show that large
errors in boundary inflows can compromise the accuracy of bed
elevation estimates. Accuracy of bed elevation estimates was none-
theless efficiently recovered within the assimilation scheme; the



Table 2
RMSE (m3/s) of the boundary inflows for each LEnBS processing cycle at the location where each tributary (four major and three minor tributaries) joins the Ohio River in Section
1. The numbers in parenthesis refer to relative bias.

Upstream of the Ohio Rivera Beaver River Muskingum River Little Kanawha River Hocking River Kanawha River

Cycle 1 848.1 912.1 990.3 1,112.9 1186.7 1405.9
(30.4%) (27.0%) (20.8%) (21.5%) (33.9%) (32.1%)

Cycle 2 327.0 301.0 404.8 454.1 467.1 622.3
(24.0%) (20.3%) (21.0%) (21.5%) (21.5%) (20.6%)

Cycle 3 894.4 1011.2 1212.0 1212.0 1281.3 1501.4
(48.0%) (47.2%) (42.6%) (40.2%) (40.3%) (40.1%)

Cycle 4 1995.1 2184.6 2487.6 2724.1 2777.3 3683.7
(63.7%) (61.2%) (55.1%) (56.1%) (54.6%) (55.3%)

Cycle 5 428.6 437.0 759.8 806.0 903.1 1289.7
(31.2%) (30.3%) (38.1%) (35.5%) (38.1%) (33.5%)

Cycle 6 660.0 768.7 809.5 777.7 798.7 824.8
(51.6%) (49.8%) (41.8%) (38.7%) (38.4%) (34.0%)

Cycle 7 532.5 526.7 497.0 613.8 616.6 1028.2
(52.7%) (49.2%) (38.6%) (40.8%) (40.0%) (43.7%)

Cycle 8 328.5 360.3 427.8 447.8 452.7 573.2
(35.3%) (32.9%) (25.3%) (26.9%) (26.5%) (30.4%)

a These boundary inflows include the Allegheny and Monongahela River drainage basins.

Fig. 12. Instantaneous discharge results corresponding to bathymetry estimates of
first-guess, cycles 1 and 8 of LEnBS over the entire experimental period are shown
as point, triangle, and diamond, respectively; the hydrograph at the locations where
the (a) Kentucky and (b) Tennessee Rivers join into the Ohio River (around 840- and
1450-km flow distance), respectively.
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assimilation scheme tended to degrade the bathymetry estimates
for cycles where the boundary inflows were biased more than 40%.

In this study, we only considered two critical uncertainties: pre-
cipitation forcing that propagates to boundary inflows and river
bathymetry errors. Future work will consider other uncertainties
in the model, such as the Manning’s roughness coefficient, as well
as generating more realistic SWOT observations, including effects
such as layover. In addition, a bias correction method needs to be
considered to improve the accuracy of the estimates.
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