

<u>Project Team</u>: John Fulton, Dave Bjerklie, Toby Minear Scott Wright

U.S. Geological Survey

Gordon Farquharson

Applied Physics Laboratory – U of Washington

Our Story: Mine data at the reach-, regional-, and continental-scale; collect; and process riverine and reservoir data.

Leverage ground-based platforms including USGS streamgaging and stageonly stations, surface-water velocity radars, and hydroacoustic sites to support hydrodynamic models

Calibration and validation of SWOT and AirSWOT data: water surface elevations and derivatives: velocity, slope, streamflow, and reservoir storage.

Scale

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Data Mining and Analysis

7,500 USGS gaging stations

Stage and discharge Stage-only Index sites

CWCM and microASAR

Surface-water, mean velocit Information Entropy

Most probable state - robus variables for different setting

Inversion modeling to genera

Calibration and Validation

Measure parameters that ad forecasts by reducing uncerta

Velocity

Surface water elevation and s

Streamflow

Bathymetry

<u>Scale</u>

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Scale

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Data Mining and Analysis

7,500 USGS gaging stations

Stage and discharge Stage-only Index sites

•			•		•	•
Low	<10	10-24	25-75	76-90	>90	High
	Much below	Below	Normal	Above	Much above	

■USGS

USGS 03086000 Ohio River at Sewickley, PA

△ Median daily statistic (79 years) ★ Measured discharge
— Discharge

Scale

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Data Mining and Analysis

7,500 USGS gaging stations

Stage and discharge Stage-only Index sites

CWCM and microASAR

Surface-water, mean velocity, streamflow Information Entropy Most probable state - robust relations b/w hydraulic variables for different settings

Scale

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Data Mining and Analysis

7,500 USGS gaging stations

Stage and discharge Stage-only Index sites

CWCM and microASAR

Surface-water, mean velocity, streamflow
Information Entropy
Most probable state - robust relations b/w hydraulic
variables for different settings
Inversion modeling to generate bathymetry

Scale

Reach-scale that coincides with SWOT elevation postings and conceptualized as a CV, where energy is dissipated and hydraulic variables are averaged.

Data Mining and Analysis

7,500 USGS gaging stations

Stage and discharge Stage-only Index sites

CWCM and microASAR

Surface-water, mean velocity, streamflow Information Entropy
Most probable state - robust relations b/w hydraulic variables for different settings

Inversion modeling to generate bathymetry

Calibration and Validation

Measure parameters that add credibility to model forecasts by reducing uncertainty

Velocity
Surface water elevation and slope
Streamflow
Bathymetry

Phase-A SWOT Issues

NAWQA, ADAPS, Hydroacoustic and NWIS dBs.
Width, depth, velocity, streamflow, surface slope and Manning's n

ADCPs provide the cross-sectional depth and velocity field at varying discharges at specific cross-sections.

Bankfull hydraulic data sets obtained from the literature including width, depth, velocity and in some cases reach-average water surface slope and meander length.

Reach specific studies and data collection efforts
Ohio River, Mississippi River, Sacramento River, Connecticut River

Radar sites – using bridge and airborne deployments.

Analysis and modeling of data, characterization of hydraulic relations, field collection and modeling of unique comparative and calibration data sets.

Error analysis